Person: Ederra Urzainqui, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ederra Urzainqui
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-0497-1627
person.page.upna
2699
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Design of a planar meta-surface based on dipoles and wires for antenna applications(2006) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, the design of a planar meta-surface based on dipoles and wires is presented. The unit cell is formed by three independent layers, which contain two parallel dipoles and one wire. The behaviour of these elements have been analysed separately as an independent unit cell, i.e., the one dipole unit cell, the two dipoles unit cell and the two dipoles and wire unit cell, by means of the transmission response and the dispersion diagrams. For a normal incident plane wave with the E field parallel to the wires and the H field axial to the dipoles, the electric and magnetic responses are excited producing a pass band behaviour which exhibit negative refractive index. This cell has been used to create meta-surfaces for antenna applications. Two configurations have been analysed; the first one is a superstrate of a dipole antenna with the pass band tuned to the resonant frequency of the dipole. It has been observed that the power goes through the meta-surface and is radiated mainly in boresight direction, which increases the directivity up to 8 dBi and the aperture efficiency of the whole configuration. In the second case, a substrate with the stop band tuned to the pass band of the superstrate and the resonant frequency of the dipole has been added. A directivity higher than 9 dBi with a back radiation of -20 dBi have been obtained.Publication Open Access Research on metamaterials for antenna applications(2005) Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Iriarte Galarregui, Juan Carlos; Martínez Pascual, Beatriz; Sáenz Sáinz, Elena; Cantora Álvarez, Pablo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaDuring the last 20 years a lot of attention has been paid to apply Electromagnetic Band Gap (EBG) technology in different frequency ranges, from microwaves to optics. EBG technology is based on the use of periodic structures to prevent the electromagnetic propagation in certain frequency ranges, known as the bandgap [1]. In the last years the new and revolutionary field of Metamaterials is trying to be applied to similar applications. Although different, both technologies have some similitudes as it has been proven for different authors. For instance when working with EBG structures Left-Handed properties can be obtained in some frequency ranges. In this paper, research efforts focussed on applying EBG technology and the more recent Metamaterials, in particular, left-handed materials, to antenna subsystems at microwave and (sub)millimetre wave frequencies are introduced.Publication Open Access Dipolos y metamateriales: mejora de las características de radiación(2004) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, pass band properties of Left Handed Media (LHM) are demonstrated. These properties have been used in order to make a LHM super-substrate that is put over a dipole antenna. This super-substrate is going to determine the characteristics of radiation patterns. Simulation with different types of configurations are presented in order to enhance the features of radiation patterns at bore-sight direction.Publication Open Access Metamaterials as super-substrate to enhance dipole antenna performances(2004) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, pass band properties of Left Handed Media (LHM) are demonstrated. These properties have been used in order to make a LHM super-substrate that is put over a dipole antenna. This super-substrate is going to determine the characteristics of radiation patterns. Simulation with different types of configurations are presented in order to enhance the features of radiation patterns at bore-sight direction.