Person:
Ederra Urzainqui, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ederra Urzainqui

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-0497-1627

person.page.upna

2699

Name

Search Results

Now showing 1 - 10 of 17
  • PublicationOpen Access
    Design of a multifrequency antenna array with the use of left-handed superstrates
    (2005) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the radiation performances of different antenna configuration based on Left-Handed superstrates are presented. First of all, the behaviour of a Left- Handed (LH) unit cell is analysed, showing a resonant response with pass band and stop band frequencies. In order to improve the radiation performances of a single dipole, ie., to increase the directivity and efficiency and to reduce the back radiation, diverse LH superstrates working at the resonant frequency of the dipole are analysed. With these configurations, improvements in terms of directivity higher than 6 dB with efficiency closer to 100 % have been obtained.
  • PublicationOpen Access
    Enhancement of the power radiated by a dipole antenna at boresight by means of a left handed superstrate
    (IEEE, 2006) Sáenz Sáinz, Elena; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper a comparison between the measured radiation performances of a single dipole and a dipole with a left handed superstrate based on a finite periodic repetition of a unit cell is presented. First of all the return losses and resonant frequency of the dipole has been measured for different sizes of the superstrate, having a good impedance matching and a decrease in the resonant frequency as the number of cells increase. By using an anechoic chamber and a receiver horn antenna, the power transmitted at boresight has been measured for different frequencies, observing a filtering behaviour due to the resonant characteristic of the superstrate and an improvement of the power transmitted at the resonant frequency of around 3 dB. Comparing the H and E plane radiation patterns of a dipole and the dipole with superstrate, more symmetrical and directive radiation patterns can be observed. Finally, a comparison between the simulated and measured aperture efficiency is presented with a good agreement.
  • PublicationOpen Access
    Decoupling of multifrequency dipole antenna arrays for microwave imaging applications
    (Hindawi Publishing Corporation, 2010) Sáenz Sáinz, Elena; Guven, K.; Ozbay, Ekmel; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The mutual coupling between elements of a multifrequency dipole antenna array is experimentally investigated by S-parameter measurements and planar near-field scanning of the radiated field. A multifrequency array with six dipoles is analyzed. In order to reduce the coupling between dipoles, a planarmetasurface is placed atop the array acting as superstrate. Themutual coupling of the antenna elements in the absence and presence of the superstrate is presented comparatively. Between 3 and 20 dB mutual coupling reduction is achieved when the superstrate is used. By scanning the field radiated by the antennas and far-field measurements of the radiation pattern, it is observed that the superstrate confines the radiated power, increases the boresight radiation, and reduces the endfire radiation.
  • PublicationOpen Access
    Planar DNG superstrate for dipole antenna gain enhancement
    (2007) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ikonen, Pekka; Tretyakov, Sergei A.; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a volumetric double-negative (DNG) superstrate based on grids of dipoles and wires for dipole antenna applications is proposed.
  • PublicationOpen Access
    Design of a planar meta-surface based on dipoles and wires for antenna applications
    (2006) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the design of a planar meta-surface based on dipoles and wires is presented. The unit cell is formed by three independent layers, which contain two parallel dipoles and one wire. The behaviour of these elements have been analysed separately as an independent unit cell, i.e., the one dipole unit cell, the two dipoles unit cell and the two dipoles and wire unit cell, by means of the transmission response and the dispersion diagrams. For a normal incident plane wave with the E field parallel to the wires and the H field axial to the dipoles, the electric and magnetic responses are excited producing a pass band behaviour which exhibit negative refractive index. This cell has been used to create meta-surfaces for antenna applications. Two configurations have been analysed; the first one is a superstrate of a dipole antenna with the pass band tuned to the resonant frequency of the dipole. It has been observed that the power goes through the meta-surface and is radiated mainly in boresight direction, which increases the directivity up to 8 dBi and the aperture efficiency of the whole configuration. In the second case, a substrate with the stop band tuned to the pass band of the superstrate and the resonant frequency of the dipole has been added. A directivity higher than 9 dBi with a back radiation of -20 dBi have been obtained.
  • PublicationOpen Access
    High efficient dipole antennas by using left-handed superstrates
    (2004) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This paper deals with pass band properties of Left Handed Media (LHM) to enhance dipole antenna performances. The LHM properties have been used in order to make high directivity antennas with good return loss features. The LHM structure is used as superstrate and placed over a dipole antenna. This superstrate is determining the characteristics of radiation patterns. Simulations of different types of LHM configurations are presented. The improvements of the radiation and matching parameters for each configuration are presented. High efficient antennas are obtained with this technique.
  • PublicationOpen Access
    Low profile multi-frequency dipole antenna array based on planar meta-surfaces
    (IEEE, 2007) Sáenz Sáinz, Elena; Ikonen, Pekka; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Tretyakov, Sergei A.; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the radiation performance of a low profile multi-frequency dipole antenna array with a planar meta-surface is presented. The meta-surface consists of two closely located parallel grids of short dipoles and one grid of continuous wires in between. By tuning a dipole to the pass band of the superstrate and due to the magnetic dipole moments induced in the unit cells, a uniform illumination is achieved and therefore an enhancement of the directivity. Placing a second meta-surface under the dipole with the stop-band tuned to the working frequency, the back radiation is reduced. By combining low and high resonant-frequency unit cells and tuning dipoles to these frequencies, a double-frequency array is formed.
  • PublicationOpen Access
    Radiation performances of a multifrequency dipole antenna array with a left handed superstrate
    (2005) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the radiation performances of a multifrequency antenna array (MFAA) which consists of two dipoles (1 and 3) that are radiating at 9.57 GHz and other one (dipole 2) radiating at 11.98 GHz are presented. In order to improve the directivity and to reduce the coupling between the dipoles, a non-uniform Left Handed (LH) superstrate formed by cells of different resonant frequencies has been placed over them. Each dipole is tuned to the resonant frequency of the cells that are on top of it allowing the power transmission and producing a very uniform illumination that enhance the radiation performances of the whole structure. With this configuration, directivity values of 10.1 dB when dipoles 1 and 3 are radiating and 8.1 dB when dipole 2 is radiating have been obtained, with a gap between dipoles of 0.23 0 at resonant frequency of the first dipole and a coupling smaller than - 17 dB.
  • PublicationOpen Access
    Dipolos y metamateriales: mejora de las características de radiación
    (2004) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, pass band properties of Left Handed Media (LHM) are demonstrated. These properties have been used in order to make a LHM super-substrate that is put over a dipole antenna. This super-substrate is going to determine the characteristics of radiation patterns. Simulation with different types of configurations are presented in order to enhance the features of radiation patterns at bore-sight direction.
  • PublicationOpen Access
    Enhanced radiation properties of a rectangular waveguide by means of a left handed media
    (2005) Sáenz Sáinz, Elena; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the results of experimental investigations to improve the gain between two antennas by means of a Left Handed Material (LHM) are presented. The basic idea is the use of a LHM media acting as a resonator to concentrate the power radiated by a rectangular waveguide achieving larger directivities and consequently larger gains. The transmission and radiation properties of this metamaterial (MTM) have been measured using a network analyser and two rectangular waveguides in the X band. Comparing the transmission parameter S21 with and without the LHM media between the waveguides, an appreciable improvement in the power received can be observed.