Person: Ederra Urzainqui, Íñigo
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ederra Urzainqui
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-0497-1627
person.page.upna
2699
Name
76 results
Search Results
Now showing 1 - 10 of 76
Publication Open Access Modified Soret lenses for dual band integrated detectors at submillimetre and millimetre wavelengths(IEEE, 2020) Torres García, Alicia E.; Pérez Escudero, José Manuel; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents a planar silicon integrated subharmonic mixer on top of a photonic-crystal platform. The local oscillator (LO) power is injected through a 2D photonic crystal (PC) slab to a resonant cavity that effectively couples the signal to a planar bow-tie antenna. The same antenna, which is printed on the top of the PC cavity, contains an antiparallel Schottky diode pair which performs the down-conversion. The proposed design is a simple, easy to integrate, low cost, low profile device. Moreover, the described fabrication process is compatible with active components integration. The performance of the design has been experimentally demonstrated showing good agreement with the simulation and is comparable with the state of-the-art of planar mixers. The work presented here is based on concepts and technologies from electronics and photonics domains and may be a good starting point for the creation of new devices, allowing the integration and upgrading of existing techniques from both worlds.Publication Open Access A millimeter-wave 4th-harmonic Schottky diode mixer with integrated local oscillator(MDPI, 2021) Pérez Escudero, José Manuel; Quemada Mayoral, Carlos; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper the design and experimental validation of a fourth-harmonic mixer based on Schottky diodes working around 300 GHz is presented. The main novelty of this work consists in the integration of an MMIC-based local oscillator, working around 75 GHz, and a mixer in the same metallic block housing. A prototype has been characterized using the Y-Factor method and yields a best measured conversion loss and an equivalent noise temperature of 14 dB and 9600 K, respectively. This performance is comparable to the state-of-the-art for this type of mixer.Publication Open Access Enhanced radiation properties of a rectangular waveguide by means of a left handed media(2005) Sáenz Sáinz, Elena; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, the results of experimental investigations to improve the gain between two antennas by means of a Left Handed Material (LHM) are presented. The basic idea is the use of a LHM media acting as a resonator to concentrate the power radiated by a rectangular waveguide achieving larger directivities and consequently larger gains. The transmission and radiation properties of this metamaterial (MTM) have been measured using a network analyser and two rectangular waveguides in the X band. Comparing the transmission parameter S21 with and without the LHM media between the waveguides, an appreciable improvement in the power received can be observed.Publication Open Access Near-field electromagnetic trapping through curl-spin forces(American Physical Society, 2013) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaNear-field electromagnetic trapping of particles is generally obtained bymeans of gradient forces. In this paper, we discuss the attractive behavior of curl-spin forces, as well as their potential for near-field electromagnetic trapping and manipulation. It is demonstrated that curl-spin forces enable the trapping of particles operating at their resonant frequency. Such phenomena can be exploited to design more efficient and selective electromagnetic traps, to boost near-field energy exchange systems, and to bring stability to coupled resonant radiators. It also is illustrated how the balance between the gradient, radiation pressure, and curl-spin force components leads to the formation of zero-force rings around their sources, which explicitly demarcate the trapping regions. Analytical and numerical analyses are presented to assess the stability of the trapping mechanism.Publication Open Access Compact bull's-eye antenna in ridge gap waveguide with circular polarization at 60 GHz(IEEE, 2021) Pérez Quintana, Dayan; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this work, a Bull's-Eye (BE) antenna with circular polarization (CP) based on ridge gap waveguide (RGW) technology, working in the millimeter-wave band (60 GHz) is numerically and experimentally demonstrated. The structure is coupled through a step transition to a ridge-line that ends in two orthogonal arms of different lengths to generate CP. The wave is coupled to the top plate by a central diamond slot surrounded by the BE structure, which consists of four concentric periodic corrugations around the slot. Simulations and experimental results are in good agreement, with practical bandwidth of 6.8% with respect to center frequency and peak gain of 18.4 dB. The antenna has right-handed CP (RHCP) with polarization discrimination of more than 30 dB.Publication Open Access A Chebyshev transformer-based microstri-to-groove-gap-waveguide inline transition for MMIC packaging(IEEE, 2019) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe gap waveguide technology has become an alternative to millimeter- and submillimeter-wave electronic circuit packaging thanks to the loss reduction associated with its use. In this paper, a simplified design of an inline transition between a microstrip and a groove gap waveguide (GGW) operating at the W-band is presented. The transition consists of a tapered microstrip line and a Chebyshev adapter that couple the quasi-TEM mode of the microstrip line to the so-called vertical mode of the GGW. The simplicity of this design makes this transition appropriate for monolithic microwave integrated circuit (MMIC) packaging at millimeter frequencies and above. The simulation results have been experimentally validated in the W-band. A good performance has been achieved, resulting in a return loss better than 10 dB and a mean insertion loss lower than 2 dB.Publication Open Access High efficient dipole antennas by using left-handed superstrates(2004) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThis paper deals with pass band properties of Left Handed Media (LHM) to enhance dipole antenna performances. The LHM properties have been used in order to make high directivity antennas with good return loss features. The LHM structure is used as superstrate and placed over a dipole antenna. This superstrate is determining the characteristics of radiation patterns. Simulations of different types of LHM configurations are presented. The improvements of the radiation and matching parameters for each configuration are presented. High efficient antennas are obtained with this technique.Publication Open Access Análisis de efecto de un superestrato left-handed en la apertura de una guía rectangular(2005) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, results showing the experimental verification of the gain improvement of a rectangular waveguide antenna when a left-handed material (LHM) is used as superstrate are presented. The improvement has been characterized by means of measuring the increase of transmission (S21 parameter) obtained when this LHM is placed between two open-ended rectangular waveguide antennas. An average increase of transmission of about 6.5 d.B has been obtained. Besides, improvements in the radiation patterns of a rectangular waveguide with a LH superstrate are analyzed. An enhancement of 3.5 dB in the directivity and a reduction of 15 dB in the back radiation have been obtained.Publication Open Access Electromangetic force density in electrically and magnetically polarizable media(American Physical Society, 2013) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe force density induced by electromagnetic fields in electrically and magnetically polarizable media is studied analytically. Different formulations of the force density as a function of field-related quantities, including the spatial derivatives of the fields, gradients of the field intensity, phase gradients, electromagnetic power flow (Poynting vector field), and kinetic momentum flow, are introduced. These formulations retain certain symmetries with respect to the force expressions introduced in previous works for an isolated particle but also point out fundamental differences, such as the suppression of recoil forces, negative radiation pressure, and far-field gradient forces. It is shown how these analytical formulations also provide the necessary means to elucidate the sign of the force density in complex media and how they can assist the design of sources to manipulate clouds of particles. The theory is illustrated with numerical examples of an insulated Hertzian dipole immersed in different media, including lossy dielectrics, media with negative permittivity and permeability, and zero-index media.Publication Open Access Induction theorem analysis of resonant nanoparticles: design of a huygens source nanoparticle laser(American Physical Society, 2014) Liberal Olleta, Íñigo; Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Ziolkowski, Richard W.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe propose an advanced formulation of standard antenna theory for the basic investigation and design of resonant nanoparticles. This methodology is based on transforming the original scattering problem into a radiation configuration by invoking the induction theorem. Then applying basic antenna theory principles, such as the suppression of any reactive power, the properties of the resonances are engineered. This nanoantenna approach has been validated by revisiting a number of well-known multilayered core-shell structures. It provides additional important physical insights into how the core-shell structures operate and it enables combinations of different resonant phenomena associated with them, e.g., plasmonic and high-ϵ resonances, in an intuitive manner. Its efficacy is demonstrated by designing a multilayered nanoparticle that achieves lasing with a maximum directivity in the forward direction and a null in the backward direction, i.e., a Huygens source nanoparticle laser.