Person: Ederra Urzainqui, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ederra Urzainqui
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-0497-1627
person.page.upna
2699
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Evaluation of mutual coupling between slots in a metasurface enhanced SIW slotted antenna(IEEE, 2023-10-26) Chocarro Álvarez, Javier; Ederra Urzainqui, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this paper, we explore the conductance properties of a longitudinal slot on a substrate integrated waveguide (SIW) with three different models. These models allow us to evaluate the impact on the slot conductance of covering it with a metasurface to improve the radiation performance. In particular, the influence of the MTS on the coupling between slots will be analyzed. Our results show that the presence of the MTS reduces the slot conductance and slot resonance length, but has limited impact on the coupling.Publication Open Access Design of a planar meta-surface based on dipoles and wires for antenna applications(2006) Sáenz Sáinz, Elena; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Maagt, Peter de; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, the design of a planar meta-surface based on dipoles and wires is presented. The unit cell is formed by three independent layers, which contain two parallel dipoles and one wire. The behaviour of these elements have been analysed separately as an independent unit cell, i.e., the one dipole unit cell, the two dipoles unit cell and the two dipoles and wire unit cell, by means of the transmission response and the dispersion diagrams. For a normal incident plane wave with the E field parallel to the wires and the H field axial to the dipoles, the electric and magnetic responses are excited producing a pass band behaviour which exhibit negative refractive index. This cell has been used to create meta-surfaces for antenna applications. Two configurations have been analysed; the first one is a superstrate of a dipole antenna with the pass band tuned to the resonant frequency of the dipole. It has been observed that the power goes through the meta-surface and is radiated mainly in boresight direction, which increases the directivity up to 8 dBi and the aperture efficiency of the whole configuration. In the second case, a substrate with the stop band tuned to the pass band of the superstrate and the resonant frequency of the dipole has been added. A directivity higher than 9 dBi with a back radiation of -20 dBi have been obtained.Publication Open Access Hyperbolic lens antenna in groove gap waveguide technology at sub-millimeter waves(IEEE, 2022) Pérez Quintana, Dayan; Biurrun Quel, Carlos; Ederra Urzainqui, Íñigo; González-Ovejero, David; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a flat hyperbolic lens antenna using Groove Gap Waveguide (GGW) technology is designed at 300 GHz. A GGW horn antenna is used to feed the metamaterial lens placed in a parallel plate waveguide (PPW), in order to increase the directivity in the direction of propagation. The combination of both devices, the metalens and the GGW antenna, achieves excellent radiation performance.