González Moreno, Miguel Ángel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
González Moreno
First Name
Miguel Ángel
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access A biological insight of hops wastes vermicomposting by Eisenia Andrei(Springer, 2024) González Moreno, Miguel Ángel; García Gracianteparaluceta, Beñat; Marcelino Sádaba, Sara; Prieto Cobo, Eduardo; Seco Meneses, Andrés; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe study was conducted to assess the feasibility of using Eisenia andrei earthworms for vermicomposting hop remains from a lupulin extraction enterprises for the brewing industry. Vermicomposting process was conducted within 70 days using hop (Humulus lupulus) wastes blended with horse manure at five different ratios for triplicate in laboratory conditions. Number of worms, cocoons, and hatchlings were observed and recorded weekly as earthworm biomass, population build-up and reproduction biological parameters. The results showed an indirect relationship between the hop content and the growth and reproductive performance of the worms. Notwithstanding this fact, 100% of survival occurred in all combinations. A 50% blend of hop wastes and horse manure is suggested to ensure the optimizing usefulness of E. andrei. In addition, moment of maximum splendour of worm population build-up and reproduction parameters measured was achieved at around 40 or 50 days since the beginning of the test, seeing a clear and widespread decline from that moment.Publication Open Access Feasibility of vermicomposting of spent coffee grounds and silverskin from coffee industries: a laboratory study(MDPI, 2020) González Moreno, Miguel Ángel; Marcelino Sádaba, Sara; Zaratiegui Urdin, Javier; Robles Domínguez, Estrella; Pérez Ezcurdia, Amaya; Seco Meneses, Andrés; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, VERMICOMPOSTAJE 4.0-VERMIOT (0011-1365-2019-000110)In the coffee industry, several by-products are generated during the production and consumption of coffee and represent an important waste from an environmental viewpoint. For improving the knowledge about this issue, a laboratory vermicomposting study of coffee silverskin (CS) and spent coffee grounds (SCG) spiked with mature horse manure (HM) in different proportions and using earthwormEisenia andreiwas carried out. The 60-day study focused on biological parameters such as total biomass gain, growth rate, cocoon production, and mortality. This study also investigated whether the vermicompost obtained could be useful and lacked toxicity through a seed germination test using hybrid wheat seeds. Results showed a disparity depending on the type of residue and the mixture used. Best options were those treatments with a medium-low amount of residue; 25% for SCG and 25% or 50% for CS. In addition, lack of toxicity was confirmed in all treatments. In conclusion, it is possible to carry out a vermicomposting of SCG and CS with some specific features.Publication Open Access Vermicomposting of lavender waste: a biological laboratory investigation(MDPI, 2022) González Moreno, Miguel Ángel; García Gracianteparaluceta, Beñat; Marcelino Sádaba, Sara; Prieto Cobo, Eduardo; Seco Meneses, Andrés; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaIn the present work, lavender waste, a residue of the essential oil extract industry, was used to feed Eisenia andrei with mature horse manure at ratios of 0:100, 25:75, 50:50, 75:25 and 100:0 on dry weight basis. Vermicomposting was carried out for 70 days in laboratory conditions. Biological parameters such as population build-up, total biomass, mortality and cocoon production were observed and measured. Increasing concentrations of waste affected positively the growth and reproduction of worms in a significant way. The 100% lavender waste combination showed the best cocoon production and even tripled their biomass in the first week. A seed germination test was also made, where no evidence of toxicity was found. The germination index range was, in general terms, above 100. The results indicated that the earthworm E. andrei was able to transform lavender waste into compost and thus play a major role in industrial waste management and apply circular economy.