Person: Latorre Biel, Juan Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Latorre Biel
First Name
Juan Ignacio
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0003-4642-7977
person.page.upna
7265
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Methodology for energy demand reduction of potato cold storage process(Wiley, 2022) Sáenz Baños, Mercedes Irache; Latorre Biel, Juan Ignacio; Martínez Cámara, Eduardo; Jiménez Macías, Emilio; Longo, Francesco; Blanco Fernández, Julio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaIn order to maintain the quality of the potatoes over time, it is necessary to store them under certain storage conditions, which minimize losses both of quality and product, preferably without using chemical treatments. Conservation chambers consume a considerable amount of energy. Between 60% and 70% of the electricity consumed is used in refrigeration. Good insulation reduces the need for cooling the potato since its optimum storage temperature for consumption is around 4–7 C and relative humidity is 85%–90%. This research studies potatoes’ cold storage process to minimize the cost in the product value chain and to ensure its competitiveness in the market. A model is developed to assess energy consumption and propose measures to reduce energy, environmental, and economic costs. All this to reduce their impact within the value chain of potato consumption. Practical Applications: In this case study, different energy efficiency measures applied to the cold storage of potatoes have been implemented: replacement or improvement of the performance of refrigeration equipment, insulation and infiltrations in the refrigeration chamber, control of the product entry temperature, thermal conditioning through free-cooling, improvements in lighting equipment, technical management, and supervision of facilities, and thermographic control. The set of actions implemented has allowed to obtain a reduction in energy demand, standardized through the developed reference line, by 16.41% compared to previous years.Publication Open Access Water footprint of a 5 kg bag of washed potatoes(Cal-Tek srl, 2023) Sáenz Baños, Mercedes Irache; Latorre Biel, Juan Ignacio; Martínez Cámara, Eduardo; Jiménez Macías, Emilio; Blanco Fernández, Julio; Ingeniería; IngeniaritzaClimate change and water scarcity increasingly impact agricultural systems. Therefore, studying food systems in depth through a water footprint perspective and their effects on water resources is necessary. Potatoes are one of the most widely consumed foods globally. This article analyzes the water footprint of a 5 kg bag of washed potatoes using a life cycle assessment (LCA) methodology. A cradle-to-gate model is created, and four environmental impact assessment methods are applied to determine the impacts on water resources. The results obtained are consistent across all four methods, indicating that water consumption in the potato washing stage has the most significant impact. The second highest water consumption occurs during the agricultural cultivation phase. Furthermore, this agricultural phase has the highest impact on other water-related categories, including such as Water Pollutants, Persistent Organic Pollutant (POP) into Water, Heavy Metals into Water, and Radioactive Substances into Water.Publication Open Access Compound Petri nets and alternatives aggregation Petri nets: two formalisms for decision-making support(SAGE, 2016) Latorre Biel, Juan Ignacio; Jiménez Macías, Emilio; Pérez de la Parte, Mercedes; Sáenz Díez, Juan Carlos; Martínez Cámara, Eduardo; Blanco Fernández, Julio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaDecision-making in technological systems, such as communication networks, manufacturing facilities and supply chains, constitutes a common requirement able to lead companies galore to success or failure. This article presents a decisionmaking methodology, where the feasible structural configurations to be analysed are chosen heuristically in the frame of a single optimization problem. For stating the optimization problem and solving it efficiently, appropriate formalisms would be used. Compound Petri nets, a particular kind of parametric Petri nets, and alternatives aggregation Petri nets, are two Petri net–based formalisms able to integrate in the same model different alternative structural configurations. Moreover, even having different characteristics that might make them useful for different applications, both formalisms present common features, such as including a set of exclusive entities and the possibility of developing compact Petri net models, by the removal of redundant information. This article is also focused on the transformation algorithm between compound Petri nets and alternatives aggregation Petri nets. This algorithm is devoted to transform a model described by one of the formalisms into an equivalent model, that is, with the same behaviour, represented using the other formalism. Finally, several application examples are given for illustrating the steps of the transformation algorithm.Publication Open Access Environmental impact analysis of natural cork stopper manufacturing(MDPI, 2022) Flor Montalvo, Francisco Javier; Martínez Cámara, Eduardo; García Alcaraz, Jorge Luis; Jiménez Macías, Emilio; Latorre Biel, Juan Ignacio; Blanco Fernández, Julio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaFor both wine makers and customers, natural cork stoppers are a symbol of quality. More-over, they are essential for maintaining the organoleptic properties of bottled wines throughout their lifespan. This research relied on the life-cycle assessment (LCA) methodology to analyze the relationship between the efficient usage of cork planks and the environmental impact of the cork stopper manufacturing industry. The goals of this research were to analyze and determine the environmental impact of producing 1 kg of natural cork stoppers. The analysis considered cork stoppers of two sizes—24 × 44 mm and 26 × 44 mm—and two manufacturing methods—punching and turning. Our findings indicated that the 24 × 44 mm cork stoppers produced with the punching method had a slightly lower environmental impact (1.36 kg CO2 eq/kg) across the ten analyzed impact categories. Conversely, 26 × 44 mm turned corks had the highest impact on the environment (1.49 kg CO2 eq/kg). Additionally, a comparison of same-sized punched and turned cork stoppers showed that the former had a lower environmental impact. This phenomenon is directly related to plank usage. In conclusion, there is a clear relationship between environmental impact and the efficient usage of raw material. In turn, an efficient usage of raw material depends on both the manufacturing method and stopper size.Publication Open Access Control of discrete event systems by means of discrete optimization and disjunctive colored PNs: application to manufacturing facilities(Hindawi, 2014) Latorre Biel, Juan Ignacio; Jiménez Macías, Emilio; Pérez de la Parte, Mercedes; Blanco Fernández, Julio; Martínez Cámara, Eduardo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen IngeniaritzaArtificial intelligence methodologies, as the core of discrete control and decision support systems, have been extensively applied in the industrial production sector. The resulting tools produce excellent results in certain cases; however, the NP-hard nature of many discrete control or decision making problems in the manufacturing area may require unaffordable computational resources, constrained by the limited available time required to obtain a solution. With the purpose of improving the efficiency of a control methodology for discrete systems, based on a simulation-based optimization and the Petri net (PN) model of the real discrete event dynamic system (DEDS), this paper presents a strategy, where a transformation applied to the model allows removing the redundant information to obtain a smaller model containing the same useful information. As a result, faster discrete optimizations can be implemented.This methodology is based on the use of a formalism belonging to the paradigmof thePNfor describingDEDS, the disjunctive colored PN. Furthermore, the metaheuristic of genetic algorithms is applied to the search of the best solutions in the solution space. As an illustration of the methodology proposal, its performance is compared with the classic approach on a case study, obtaining faster the optimal solution.Publication Open Access Analysis of product shrinkage and waste in a potato bagging plant(Dime University of Genoa, 2022) Sáenz Baños, Mercedes Irache; Latorre Biel, Juan Ignacio; Blanco Fernández, Julio; Martínez Cámara, Eduardo; Pérez de la Parte, P.; Jiménez Macías, Emilio; Ingeniería; IngeniaritzaNowadays, an average of 2 kg of waste per person are generated in Spain. Furthermore, the household consumption is rising and, as a consequence, the waste production is also increasing. This trend presents a direct impact in the environment. Moreover, after two years of COVID-19 pandemic, it has been detected a stronger rise in consumption per person, while consumption through professional commercial channels for hospitality industry has been lower. This paper analizes the waste generation and product shrinkage in a potato bagging plant, which addresses its production to both final consumers and retailers. The raw materials washing line, as well as the production line, are taken into consideration in the analysis, while new uses to the produced waste are proposed, aiming at providing new useful life, such as the production of bioplastics or the production of biodiesel. As a consequence, the environment impact is minimized and new products are obtained.Publication Open Access Equivalent and efficient optimization models for an industrial discrete event system with alternative structural configurations(Hindawi / Wiley, 2018) Latorre Biel, Juan Ignacio; Jiménez Macías, Emilio; Pérez de la Parte, Mercedes; Institute of Smart Cities - ISCDiscrete event systems in applications, such as industry and supply chain,may show a very complex behavior. For this reason, their design and operation may be carried out by the application of optimization techniques for decision making in order to obtain their highest performance. In a general approach, it is possible to implement these optimization techniques by means of the simulation of a Petri net model, which may require an intensive use of computational resources. One key factor in the computational cost of simulation-based optimization is the size of the model of the system; hence, it may be useful to apply techniques to reduce it. This paper analyzes the relationship between two Petri net formalisms, currently used in the design of discrete event systems, where it is usual to count on a set of alternative structural configurations.These formalisms are a particular type of parametric Petri nets, called compound Petri nets, and a set of alternative Petri nets. The development of equivalent models under these formalisms and the formal proof of this equivalence are the main topics of the paper.The basis for this formal approach is the graph of reachable markings, a powerful tool able to represent the behavior of a discrete event system and, hence, to show the equivalence between two different Petri net models. One immediate application of this equivalence is the substitution of a large model of a system by a more compact one, whose simulation may be less demanding in the use of computational resources.