Person:
Mompó Roselló, Juan José

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Mompó Roselló

First Name

Juan José

person.page.departamento

ORCID

person.page.upna

811049

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Brillouin optical time-domain analysis sensor with pump pulse amplification
    (Optical Society of America, 2016) Mompó Roselló, Juan José; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensors with mitigation for pump pulse attenuation. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat total gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. This frequency modulation of the probe brings additional advantages because it provides increased tolerance to non-local effects and to spontaneous Brillouin scattering noise, so that a probe power above the Brillouin threshold of the fiber can be safely deployed, hence, increasing the signal-to-noise ratio of the measurement. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.
  • PublicationOpen Access
    Brillouin optical time-domain analysis sensor with amplification of pump pulses and tolerant to non-local effects
    (SPIE, 2016) Mompó Roselló, Juan José; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We demonstrate a simple technique to provide conventional Brillouin optical time-domain analysis sensor with compensation for pump pulse attenuation and tolerance to non-local effects. The technique is based on operating the sensor in loss configuration so that energy is transferred from the probe wave to the pump pulse that becomes amplified as it counter-propagates with the probe wave. Furthermore, the optical frequency of the probe wave is modulated along the fiber so that the pump pulse experiences a flat gain spectrum that equally amplifies all the spectral components of the pulse, hence, preventing distortion. The method is experimentally demonstrated in a 100-km fiber link, obtaining a measurement uncertainty of 1 MHz at the worst-contrast position.
  • PublicationOpen Access
    Non-local effects in Brillouin optical time-domain analysis sensors
    (MDPI, 2017) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Loayssa Lara, Alayn; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Brillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of the detected measurement signal. The probe wave power is constrained by the generation of noise induced by spontaneous Brillouin scattering and at lower power by the so-called non-local effects. In this work, we focus on the latter. We review the physical origins of non-local effects and analyze the performance impairments that they bring. In addition, we discuss the different methods that have been proposed to counteract these effects comparing their relative merits and ultimate performance. Particularly, we focus on a technique that we have devised to compensate non-local effects which is based on introducing an optical frequency modulation or dithering to the probe wave. This method is shown to provide a comprehensive solution to most of the impairments associated with non-local effects and also to enable some side benefits, such as amplification of the pump pulses to compensate the attenuation of the fiber.