Ascorbe Muruzabal, Joaquín

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ascorbe Muruzabal

First Name

Joaquín

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Gas detection using LMR-based optical fiber sensors
    (MDPI, 2018) Dreyer, Uilian José; Ozcariz Celaya, Aritz; Ascorbe Muruzabal, Joaquín; Zubiate Orzanco, Pablo; Vitoria Pascual, Ignacio; Martelli, Cicero; Cardozo da Silva, Jean Carlos; Ruiz Zamarreño, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This work presents a first approach to the utilization of Lossy Mode Resonance (LMR) based optical fiber sensors for gas detection. The optical sensor is based on a SnO2 thin-film fabricated onto the core of cladding removed multimode fibers (MMF). The time response of the device to four different gases (NH3, NO, CO2 and O2) was monitored obtaining the best sensitivity for NO whereas the response to NH3 revealed the best repeatability.
  • PublicationOpen Access
    Fabrication of long period gratings by periodically removing the coating of cladding-etched single mode optical fiber towards optical fiber sensor development
    (MDPI, 2018) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 2017/PI044
    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.
  • PublicationOpen Access
    Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors
    (Elsevier, 2018) Gallego Martínez, Elieser Ernesto; Ascorbe Muruzabal, Joaquín; Del Villar, Ignacio; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.