(MDPI, 2020) Raventós Pujol, Armajac; Campión Arrastia, María Jesús; Induráin Eraso, Esteban; Estatistika, Informatika eta Matematika; Institute for Advanced Research in Business and Economics - INARBE; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
We analyze the concept of a fuzzy preference on a set of alternatives, and how it can be decomposed in a triplet of new fuzzy binary relations that represent strict preference, weak preference and indifference. In this setting, we analyze the problem of aggregation of individual fuzzy preferences in a society into a global one that represents the whole society and accomplishes a shortlist of common-sense properties in the spirit of the Arrovian model for crisp preferences. We introduce a new technique that allows us to control a fuzzy preference by means of five crisp binary relations. This leads to an Arrovian impossibility theorem in this particular fuzzy setting.