Echeverría Ancín, Myriam

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Echeverría Ancín

First Name

Myriam

person.page.departamento

Producción Agraria

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Four genes essential for recombination define GInts, a new type of mobile genomic island widespread in bacteria
    (Nature Publishing Group, 2017) Bardají Goikoetxea, Leire; Echeverría Ancín, Myriam; Rodríguez Palenzuela, Pablo; Martínez García, Pedro M.; Murillo Martínez, Jesús; Producción Agraria; Nekazaritza Ekoizpena
    Integrases are a family of tyrosine recombinases that are highly abundant in bacterial genomes, actively disseminating adaptive characters such as pathogenicity determinants and antibiotics resistance. Using comparative genomics and functional assays, we identified a novel type of mobile genetic element, the GInt, in many diverse bacterial groups but not in archaea. Integrated as genomic islands, GInts show a tripartite structure consisting of the ginABCD operon, a cargo DNA region from 2.5 to at least 70 kb, and a short AT-rich 3′ end. The gin operon is characteristic of GInts and codes for three putative integrases and a small putative helix-loop-helix protein, all of which are essential for integration and excision of the element. Genes in the cargo DNA are acquired mostly from phylogenetically related bacteria and often code for traits that might increase fitness, such as resistance to antimicrobials or virulence. GInts also tend to capture clusters of genes involved in complex processes, such as the biosynthesis of phaseolotoxin by Pseudomonas syringae. GInts integrate site-specifically, generating two flanking direct imperfect repeats, and excise forming circular molecules. The excision process generates sequence variants at the element attachment site, which can increase frequency of integration and drive target specificity.