Iribas Pardo, Haritz
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Iribas Pardo
First Name
Haritz
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
17 results
Search Results
Now showing 1 - 10 of 17
Publication Open Access Pulse coding linearization for Brillouin optical time-domain analysis sensors(Optical Society of America, 2018) Mariñelarena Ollacarizqueta, Jon; Iribas Pardo, Haritz; Loayssa Lara, Alayn; Institute of Smart Cities - ISCWe introduce a simple method to extend the performance of pulse coding techniques in their application to Brillouin optical time-domain analysis sensors (BOTDA). It is based on applying a simple logarithmic processing on the detected probe wave that compensates the deviation from linearity of the sensor response for long code lengths. The technique ensures that the accumulated effect of a sequence of pulses is equal to the linear addition of the effects of the individual components, which is the essential condition to ensure a correct decoding of the probe gain measurement. We experimentally demonstrate the compensation of the Brillouin frequency shift error induced by the accumulated gain nonlinearity. Furthermore, a proof-of-concept 80 km sensing link within a total 200 km fiber loop demonstrated a better than 2 MHz precision with 2 m spatial resolution.Publication Open Access Fiber-optic brillouin distributed sensors: from dynamic to long-range measurements(CRC Press, 2018) Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Iribas Pardo, Haritz; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis chapter focuses on Brillouin optical time-domain analysis (BOTDA) sensors because they are the most successful Brillouin distributed sensors (BDS) type in terms of performance and practical applications. Distributed sensor featuring can be done in the time, coherence, or frequency domains, giving rise to the three main analysis BDS types: BOTDA, Brillouin optical correlation-domain analysis (BOCDA), and Brillouin optical frequency-domain analysis (BOFDA). The distance range of measurements performed using a BOTDA sensor is given by the length of sensing fiber that the system is able to measure with a specified performance in terms of measurement precision and time. The chapter reviews the fundamentals and the research directions in BDSs. The applications of the technology are multiple and in diverse fields¿for instance, in the oil and gas industry, where BDSs have been applied to measure temperature and strain along the umbilical cables used for subsea wells.Publication Open Access Non-local effects in Brillouin optical time-domain analysis sensors(MDPI, 2017) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Loayssa Lara, Alayn; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBrillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of the detected measurement signal. The probe wave power is constrained by the generation of noise induced by spontaneous Brillouin scattering and at lower power by the so-called non-local effects. In this work, we focus on the latter. We review the physical origins of non-local effects and analyze the performance impairments that they bring. In addition, we discuss the different methods that have been proposed to counteract these effects comparing their relative merits and ultimate performance. Particularly, we focus on a technique that we have devised to compensate non-local effects which is based on introducing an optical frequency modulation or dithering to the probe wave. This method is shown to provide a comprehensive solution to most of the impairments associated with non-local effects and also to enable some side benefits, such as amplification of the pump pulses to compensate the attenuation of the fiber.Publication Open Access Latest research on long-range Brillouin distributed sensing(SPIE, 2019) Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Iribas Pardo, Haritz; Mariñelarena Ollacarizqueta, Jon; Mompó Roselló, Juan José; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua projecto 0011-1365-2017-000122We review the latest developments in long-range Brillouin optical time-domain analysis sensors. The factors that impair the performance of these sensors, particularly in terms of their distance range, are discussed together with the latest methods to overcome them. We focus on our recent contributions based on the application of the probe dithering method, which is based on introducing a wavelength modulation to the probe wave. This technique is shown to effectively compensate nonlocal effects originated in the depletion of the pump pulse as well as of its pedestal. In addition, it can provide amplification to the pump wave with a slight modification of the setup. Furthermore, this method can be combined with pump pulse coding and a new technique for coding linearization that we have devised to further extend the sensing length into the hundreds of kilometers range.Publication Open Access Enhanced tolerance to pulse extinction ratio in Brillouin optical time domain analysis sensors by dithering of the optical source(SPIE, 2015) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate the relaxation of the stringent requirements placed on the pulse extinction ratio in long-range Brillouin optical time-domain analysis sensors (BOTDA) by modulating the wavelength of the laser source that is used to generate both pump and probe waves. This modulation makes the counter-propagating pulse pedestal and probe waves to become correlated only at certain locations in the fiber, thus reducing the gain experienced by the probe wave, which is precisely the process that limits the performance in long-range BOTDAs. Proof-of-concept experimental results in a 20-km sensing link demonstrate a 6-dB reduction of the required modulator extinction ratio.Publication Open Access Compensation of nonlocal effects induced by the extinction ratio of pump pulses in Brillouin optical time-domain analysis sensors(Optical Society of America, 2019) Mariñelarena Ollacarizqueta, Jon; Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe demonstrate a technique to compensate the nonlocal effects that appear in Brillouin optical time-domain analysis sensors when pump pulses with limited extinction ratio are deployed. These recently discovered nonlocal effects are originated in the interaction between the probe wave and the pulse pedestal. Hence, their compensation method is based on deploying a modulation (dithering) of the optical frequency of the probe and pulse pedestal waves that provides a reduction of the effective interaction length between them. This is implemented by taking advantage of the chirp associated to the direct current modulation of a semiconductor laser used as common source for both waves. The net effect of this procedure is that the probe and pulse pedestal waves display efficient Brillouin interaction just at correlation peaks along the fiber where the frequency difference between both waves remains constant. Proof-of-concept experiments in a 25-km sensing link demonstrate the performance of the technique, where large errors of more than 10 MHz in the measurement of the Brillouin frequency shift are completely compensated by introducing a sinusoidal dithering to the laser source.Publication Open Access Enhancement of signal-to-noise ratio in Brillouin optical time domain analyzers by dual-probe detection(SPIE, 2017) Iribas Pardo, Haritz; Loayssa Lara, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe demonstrate a simple technique to enhance the signal-to-noise ratio (SNR) in Brillouin optical time-domain analysis sensors by the addition of gain and loss processes. The technique is based on the shift of the pump pulse optical frequency in a double-sideband probe system, so that the gain and loss processes take place at different frequencies. In this manner, the loss and the gain do not cancel each other out, and it makes possible to take advantage of both informations at the same time, obtaining an improvement of 3 dB on the SNR. Furthermore, the technique does not need an optical filtering, so that larger improvement on SNR and a simplification of the setup are obtained. The method is experimentally demonstrated in a 101 km fiber spool, obtaining a measurement uncertainty of 2.6 MHz (2σ) at the worst-contrast position for 2 m spatial resolution. This leads, to the best of our knowledge, to the highest figure-of-merit in a BOTDA without using coding or raman amplification.Publication Open Access Cyclic coding for Brillouin optical time-domain analyzers using probe dithering(Optical Society of America, 2017) Iribas Pardo, Haritz; Loayssa Lara, Alayn; Sauser, Florian; Llera, Miguel; Le Floch, Sébastien; Institute of Smart Cities - ISCWe study the performance limits of mono-color cyclic coding applied to Brillouin optical time-domain analysis (BOTDA) sensors that use probe wave dithering. BOTDA analyzers with dithering of the probe use a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This avoids non-local effects while keeping the Brillouin threshold at its highest level, thus preventing the spontaneous Brillouin scattering from generating noise in the deployed sensing fiber. In these conditions, it is possible to introduce an unprecedented high probe power into the sensing fiber, which leads to an enhancement of the signal-to-noise ratio (SNR) and consequently to a performance improvement of the analyzer. The addition of cyclic coding in these set-ups can further increase the SNR and accordingly enhance the performance. However, this unprecedented probe power levels that can be employed result in the appearance of detrimental effects in the measurement that had not previously been observed in other BOTDA set-ups. In this work, we analyze the distortion in the decoding process and the errors in the measurement that this distortion causes, due to three factors: the power difference of the successive pulses of a code sequence, the appearance of first-order non-local effects and the non-linear amplification of the probe wave that results when using mono-color cyclic coding of the pump pulses. We apply the results of this study to demonstrate the performance enhancement that can be achieved in a long-range dithered dual-probe BOTDA. A 164-km fiber-loop is measured with 1-m spatial resolution, obtaining 3-MHz Brillouin frequency shift measurement precision at the worst contrast location. To the best of our knowledge, this is the longest sensing distance achieved with a BOTDA sensor using mono-color cyclic coding.Publication Open Access Simplified Brillouin sensor for structural health monitoring applications based on passive optical filtering(SPIE, 2015) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mariñelarena Ollacarizqueta, Jon; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe present a simplified configuration for distributed Brillouin optical time domain analysis sensors. The technique is based on passive optical filtering of the spectral components generated in an RF-pulse-modulated optical source. The aim of this configuration is to reduce the cost of the sensor by simplifying the generation of the optical waves involved in the sensing process. Proof-of-concept experiments demonstrate distributed temperature measurement with 1 m resolution over a 20 km sensing fiber.Publication Open Access Second-order non-local effects mitigation in BOTDA sensors by tracking the BFS profile(SPIE, 2017) Mompó Roselló, Juan José; Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe demonstrate a technique to mitigate the residual second-order non-local effects in Brillouin optical time-domain analysis (BOTDA) sensors in which the Brillouin frequency shift (BFS) profile is not uniform along the fiber. It is based on adding a wavelength modulation to the probe wave that makes it track the average BFS found along its way. Using this method we are able to inject a total probe wave power of 15 dBm in a 120-km sensing fiber link, which, to the best of our knowledge, is the highest probe power ever demonstrated in a long-range BOTDA sensing fiber link. The enhancement in the detected signal-to-noise ratio brought by the use of such power provides 2-MHz BFS measurement precision at the end of the 120-km sensing link with 3-m spatial resolution, all without the need to resort to additional means such as the use of coding or Raman gain.