Person:
Iribas Pardo, Haritz

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Iribas Pardo

First Name

Haritz

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ORCID

0000-0003-4260-2379

person.page.upna

810714

Name

Search Results

Now showing 1 - 10 of 10
  • PublicationOpen Access
    Simplified Brillouin sensor for structural health monitoring applications based on passive optical filtering
    (SPIE, 2015) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mariñelarena Ollacarizqueta, Jon; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a simplified configuration for distributed Brillouin optical time domain analysis sensors. The technique is based on passive optical filtering of the spectral components generated in an RF-pulse-modulated optical source. The aim of this configuration is to reduce the cost of the sensor by simplifying the generation of the optical waves involved in the sensing process. Proof-of-concept experiments demonstrate distributed temperature measurement with 1 m resolution over a 20 km sensing fiber.
  • PublicationOpen Access
    Compensation of nonlocal effects induced by the extinction ratio of pump pulses in Brillouin optical time-domain analysis sensors
    (Optical Society of America, 2019) Mariñelarena Ollacarizqueta, Jon; Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We demonstrate a technique to compensate the nonlocal effects that appear in Brillouin optical time-domain analysis sensors when pump pulses with limited extinction ratio are deployed. These recently discovered nonlocal effects are originated in the interaction between the probe wave and the pulse pedestal. Hence, their compensation method is based on deploying a modulation (dithering) of the optical frequency of the probe and pulse pedestal waves that provides a reduction of the effective interaction length between them. This is implemented by taking advantage of the chirp associated to the direct current modulation of a semiconductor laser used as common source for both waves. The net effect of this procedure is that the probe and pulse pedestal waves display efficient Brillouin interaction just at correlation peaks along the fiber where the frequency difference between both waves remains constant. Proof-of-concept experiments in a 25-km sensing link demonstrate the performance of the technique, where large errors of more than 10 MHz in the measurement of the Brillouin frequency shift are completely compensated by introducing a sinusoidal dithering to the laser source.
  • PublicationOpen Access
    Enhanced tolerance to pulse extinction ratio in Brillouin optical time domain analysis sensors by dithering of the optical source
    (SPIE, 2015) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We demonstrate the relaxation of the stringent requirements placed on the pulse extinction ratio in long-range Brillouin optical time-domain analysis sensors (BOTDA) by modulating the wavelength of the laser source that is used to generate both pump and probe waves. This modulation makes the counter-propagating pulse pedestal and probe waves to become correlated only at certain locations in the fiber, thus reducing the gain experienced by the probe wave, which is precisely the process that limits the performance in long-range BOTDAs. Proof-of-concept experimental results in a 20-km sensing link demonstrate a 6-dB reduction of the required modulator extinction ratio.
  • PublicationOpen Access
    Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors
    (Optical Society of America, 2017) Iribas Pardo, Haritz; Mariñelarena Ollacarizqueta, Jon; Feng, Cheng; Urricelqui Polvorinos, Javier; Schneider, Thomas; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We report on two previously unknown non-local effects that have been found to impair Brillouin optical time-domain analysis (BOTDA) sensors that deploy limited extinction ratio (ER) pump pulses. The first one originates in the increased depletion of the pedestal of the pump pulses by the amplified probe wave, which in turn entails a reduced amplification of the probe and a measurement distortion. The second effect is due to the interplay between the transient response of the erbium-doped fiber amplifiers (EDFA) that are normally deployed to amplify the pump and the pedestal of the pump pulses. The EDFA amplification modifies the pedestal that follows the pulses in such a way that it also leads to a distortion of the measured gain spectra after normalization. Both effects are shown to lead to non-local effects in the measurements that have similar characteristics to those induced by pump pulse depletion. In fact, the total depletion factor for calculations of the Brillouin frequency shift (BFS) error in BOTDA sensors is shown to be the addition of the depletion factors linked to the pump pulse as well as the pedestal. A theoretical model is developed to analyze both effects by numerical simulation. Furthermore, the effects are investigated experimentally in long-range BOTDA sensors. The pedestal depletion effect is shown to severely constrain the probe power as well as the minimum ER of the pulses that can be deployed in BOTDA sensors. For instance, it is shown that, in a long-range dual-probe BOTDA, an ER higher that 32-dB, which is above that provided by standard electro-optic modulators (EOM), is necessary to be able to deploy a probe power of -3 dBm, which is the theoretical limit for that type of sensors. Even more severe can be the limitation due to the depletion effect induced by the EDFA transient response. It is found that the impairments brought by this effect are independent of the probe power, hence setting an ultimate limit for the BOTDA sensor performance. Experimentally, a long-range BOTDA deploying a 26-dB ER EOM and a conventional EDFA is shown to exhibit a BFS error higher than 1 MHz even for very small probe power.
  • PublicationOpen Access
    Second-order non-local effects mitigation in BOTDA sensors by tracking the BFS profile
    (SPIE, 2017) Mompó Roselló, Juan José; Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    We demonstrate a technique to mitigate the residual second-order non-local effects in Brillouin optical time-domain analysis (BOTDA) sensors in which the Brillouin frequency shift (BFS) profile is not uniform along the fiber. It is based on adding a wavelength modulation to the probe wave that makes it track the average BFS found along its way. Using this method we are able to inject a total probe wave power of 15 dBm in a 120-km sensing fiber link, which, to the best of our knowledge, is the highest probe power ever demonstrated in a long-range BOTDA sensing fiber link. The enhancement in the detected signal-to-noise ratio brought by the use of such power provides 2-MHz BFS measurement precision at the end of the 120-km sensing link with 3-m spatial resolution, all without the need to resort to additional means such as the use of coding or Raman gain.
  • PublicationOpen Access
    Latest research on long-range Brillouin distributed sensing
    (SPIE, 2019) Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Iribas Pardo, Haritz; Mariñelarena Ollacarizqueta, Jon; Mompó Roselló, Juan José; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua projecto 0011-1365-2017-000122
    We review the latest developments in long-range Brillouin optical time-domain analysis sensors. The factors that impair the performance of these sensors, particularly in terms of their distance range, are discussed together with the latest methods to overcome them. We focus on our recent contributions based on the application of the probe dithering method, which is based on introducing a wavelength modulation to the probe wave. This technique is shown to effectively compensate nonlocal effects originated in the depletion of the pump pulse as well as of its pedestal. In addition, it can provide amplification to the pump wave with a slight modification of the setup. Furthermore, this method can be combined with pump pulse coding and a new technique for coding linearization that we have devised to further extend the sensing length into the hundreds of kilometers range.
  • PublicationOpen Access
    Non-local effects in Brillouin optical time-domain analysis sensors
    (MDPI, 2017) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Loayssa Lara, Alayn; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Brillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of the detected measurement signal. The probe wave power is constrained by the generation of noise induced by spontaneous Brillouin scattering and at lower power by the so-called non-local effects. In this work, we focus on the latter. We review the physical origins of non-local effects and analyze the performance impairments that they bring. In addition, we discuss the different methods that have been proposed to counteract these effects comparing their relative merits and ultimate performance. Particularly, we focus on a technique that we have devised to compensate non-local effects which is based on introducing an optical frequency modulation or dithering to the probe wave. This method is shown to provide a comprehensive solution to most of the impairments associated with non-local effects and also to enable some side benefits, such as amplification of the pump pulses to compensate the attenuation of the fiber.
  • PublicationOpen Access
    Cost-effective Brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering
    (Hindawi Publishing Corporation, 2016) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mariñelarena Ollacarizqueta, Jon; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. Te technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. Te optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1m spatial resolution over a 20km sensing fiber with a 0.9MHz precision in the measurement of the Brillouin frequency shiſt, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.
  • PublicationOpen Access
    Fiber-optic brillouin distributed sensors: from dynamic to long-range measurements
    (CRC Press, 2018) Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Iribas Pardo, Haritz; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This chapter focuses on Brillouin optical time-domain analysis (BOTDA) sensors because they are the most successful Brillouin distributed sensors (BDS) type in terms of performance and practical applications. Distributed sensor featuring can be done in the time, coherence, or frequency domains, giving rise to the three main analysis BDS types: BOTDA, Brillouin optical correlation-domain analysis (BOCDA), and Brillouin optical frequency-domain analysis (BOFDA). The distance range of measurements performed using a BOTDA sensor is given by the length of sensing fiber that the system is able to measure with a specified performance in terms of measurement precision and time. The chapter reviews the fundamentals and the research directions in BDSs. The applications of the technology are multiple and in diverse fields¿for instance, in the oil and gas industry, where BDSs have been applied to measure temperature and strain along the umbilical cables used for subsea wells.
  • PublicationOpen Access
    Second-order nonlocal effects mitigation in Brillouin optical time-domain analysis sensors by tracking the Brillouin frequency shift profile of the fiber
    (IEEE, 2017) Mompó Roselló, Juan José; Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    We report on an additional limitation that has been found in Brillouin optical time-domain analysis (BOTDA) sensors due to the so-called second-order nonlocal effects (NLE). Second-order NLE appear in BOTDA setups that deploy a double probe waves to compensate the transfer of energy between the pump pulse and the probe wave, and are related to a spectral distortion of the pump pulse that leads to measurement errors and an effective limit on the maximum probe power that can be deployed in the sensor. We theoretically and experimentally demonstrate that the techniques that have been presented so far in the literature to compensate second-order NLE are only effective in the case that the Brillouin frequency shift (BFS) along the sensing fiber is uniform. However, this requirement for uniformity is not realistic in real world scenarios in which a variety of fibers with different BFS and subjected to different environmental conditions are typically deployed. Therefore, we demonstrate a new method to mitigate the effects of BFS variation in the BOTDA setups that compensate second-order NLE. This method is based on introducing an additional wavelength modulation to the probe wave so as to track the mean BFS changes along the sensing fiber link. With this method, we demonstrate a BOTDA setup that, without coding, distributed amplification, or any other form of performance enhancement, achieves a sensing length of 120 km with 3-m spatial resolution and 2-MHz measurement precision. Moreover, the setup demonstrates, to our knowledge, the largest probe power ever injected in a BOTDA sensing link.