Aguirre Gallego, Erik

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aguirre Gallego

First Name

Erik

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Zigbee radio channel analysis in a complex vehicular environment [wireless corner]
    (IEEE, 2014) Rajo-Iglesias, Eva; López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Garate Fernández, Uxue; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, the influence of topology and morphology of a particularly complex scenario for the deployment of ZigBee wireless sensor networks is analyzed. This complex scenario is a car. The existence of loss mechanisms such as material absorption (seats, dashboard, etc.) and strong multipath components due to the great number of obstacles and the metallic environment (bodywork), as well as the growing demand for wireless systems within a vehicle emphasizes the importance of the configuration of the heterogeneous intra-car wireless systems. Measurement results as well as simulation results by means of an in-house 3D ray launching algorithm illustrate the strong influence of this complex scenario in the overall performance of the intra-car wireless sensor network. Results also show that ZigBee is a viable technology for successfully deploying intra-car wireless sensor networks.
  • PublicationOpen Access
    Analysis of bluetooth-based wireless sensor networks performance in hospital environments
    (MDPI, 2016) López Iturri, Peio; Led Ramos, Santiago; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a method to analyze the performance of Bluetooth-based Wireless Sensor Networks (WSN) deployed within hospital environments is presented. Due to the complexity that this kind of scenarios exhibit in terms of radio propagation and coexistence with other wireless communication systems and other potential interference sources, the deployment of WSNs becomes a complex task which requires an in-depth radio planning analysis. For that purpose, simulation results obtained with the aid of an in-house developed 3D Ray Launching code are presented. The scenarios under analysis are located at the Hospital of Navarre Complex (HNC), in the city of Pamplona. As hospitals have a wide variety of scenarios, the analysis has been carried out in different zones such as Boxes, where different medical sensors based on Bluetooth communication protocol have been deployed. The simulation results obtained have been validated with measurements within the scenario under analysis, exhibiting Bluetooth-based WSNs performance within hospital environments in terms of coverage/capacity relations. The proposed methodology can aid in obtaining optimal network configuration and hence performance of Bluetooth-based WSNs within medical/health service provision environments.
  • PublicationOpen Access
    Characterization of wireless channel impact on wireless sensor network performance in public transportation buses
    (IEEE, 2015) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Zubiri Segura, Cristóbal; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza
    Wireless communications systems are growing rapidly during the last two decades and they are gaining a significant role for multiple communication tasks within public transportation buses. In this work, the impact of topology and morphology of different types of urban buses is analyzed with the aid of an in-house developed 3D Ray Launching code and compared with on-board measurements of a deployed Wireless Sensor Network. The presence of human beings has been taken into account, showing a significant influence in the signal attenuation in the case of considering persons. In addition, the statistical analysis of simulation results considering both large and small-scale fading has been performed, providing good agreement with statistics for typical indoor environments. In addition, a Wireless Sensor Network has been programmed and deployed within the buses in order to analyze topological impact with overall system performance, with the aim of minimizing the energy consumption as well as non-desired interference levels. The use of deterministic techniques destined to consider the inherent complexity of the buses can aid in wireless system planning in order to minimize power consumption and increase overall system capacity.
  • PublicationOpen Access
    Analysis of radio wave propagation for ISM 2.4GHz wireless sensor networks in inhomogeneous vegetation environments
    (2014) Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    The use of wireless networks has been extended in an exponential growing due to the improvement in terms of battery life and low consumption of the devices. However, it is highly important to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4GHz Wireless Sensor Networks (WSN) in an inhomogeneous vegetation environment has been analyzed. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurements campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.
  • PublicationOpen Access
    Radio characterization for ISM 2.4 GHz wireless sensor networks for judo monitoring applications
    (MDPI, 2014) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.
  • PublicationOpen Access
    Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios
    (MDPI, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Santesteban Martínez de Morentin, Daniel; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica
    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.
  • PublicationOpen Access
    Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization
    (MDPI, 2015) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza
    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
  • PublicationOpen Access
    Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels
    (Hindawi, 2015) López Iturri, Peio; Miguel Bilbao, Silvia de; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ramos González, Victoria; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. Thismethod can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied.
  • PublicationOpen Access
    Implementation of context aware e-health environments based on social sensor networks
    (MDPI, 2016) Aguirre Gallego, Erik; Led Ramos, Santiago; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    In this work, context aware scenarios applied to e-Health and m-Health in the framework of typical households (urban and rural) by means of deploying Social Sensors will be described. Interaction with end-users and social/medical staff is achieved using a multi-signal input/output device, capable of sensing and transmitting environmental, biomedical or activity signals and information with the aid of a combined Bluetooth and Mobile system platform. The devices, which play the role of Social Sensors, are implemented and tested in order to guarantee adequate service levels in terms of multiple signal processing tasks as well as robustness in relation with the use wireless transceivers and channel variability. Initial tests within a Living Lab environment have been performed in order to validate overall system operation. The results obtained show good acceptance of the proposed system both by end users as well as by medical and social staff, increasing interaction, reducing overall response time and social inclusion levels, with a compact and moderate cost solution that can readily be largely deployed.
  • PublicationOpen Access
    Analysis and description of HOLTIN service provision for AECG monitoring in complex indoor environments
    (MDPI, 2013) Led Ramos, Santiago; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Martínez de Espronceda Cámara, Miguel; Serrano Arriezu, Luis Javier; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption.