Casalí Sarasíbar, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Casalí Sarasíbar
First Name
Javier
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Photogrammetrical and field measurement of gullies with contrasting morphology(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Marzolff, I.; Giménez Díaz, Rafael; Seeger, M.; Campo-Bescós, Miguel; Ries, J. B.; Casalí Sarasíbar, Javier; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakDespite a wealth of studies on monitoring different types of gullies by using remote-sensing technique such as photogrammetry, relatively few efforts have been made to test their accuracy. Therefore the question arises as to what extent the accuracy of gully monitoring using photogrammetric technique depends on gully morphology. The objective of this work is to investigate this issue. To do that, we confront field measurements of cross-sectional areas of gullies with contrasting morphology with a similar dataset obtained using photogrammetry. Below, we present the first findings of this investigation.Publication Open Access Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations(MDPI, 2009) Álvarez-Mozos, Jesús; Verhoest, Niko E. C.; Larrañaga Urien, Arantzazu; Casalí Sarasíbar, Javier; González de Audícana Amenábar, María; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakRadar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values.Publication Open Access Effect of topography on retreat rate of different gully headcuts in Bardenas Reales area (Navarre, Spain)(Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakIn Northeast Spain, gullying is a widespread phenomenon. This type of erosion is especially intense in Bardenas Reales (Navarre) where at least two major typical kinds of gully headcut are present. A first group developed in soil material (named, conventional gully headcut), and second group of gully headcut with a sandstone layer as a top horizon (named, sandstone gully headcut). In addition, within the former group, we can distinguish a subgroup of gully headcuts developed in soils particularly prone to piping and tunnelling due to the dispersive condition of the materials (named piping associated gully headcut). In this situation, a question arises: to what extent simple topographic parameters account for the retreat rate of the different kind of gully headcuts observed in the region of Bardenas Reales? The aim of this study was to investigate and gain insight in this issue.Publication Open Access Accuracy of methods for field assessment of rill and ephemeral gully erosion(Elsevier, 2006) Casalí Sarasíbar, Javier; Loizu Maeztu, Javier; Campo-Bescós, Miguel; Santisteban Comino, Luisa María de; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakTo properly assess soil erosion in agricultural areas, it is necessary to determine precisely the volume of ephemeral gullies and rills in the field by using direct measurement procedures. However, little information is available on the accuracy of the different methods used. The main purpose of this paper is to provide information for a suitable assessment of rill and ephemeral gully erosion with such direct measurement methods. To achieve this objective: a) the measurement errors associated to three methods used for field assessment of channel cross sectional areas are explored; b) the influence of the number of cross sections used per unit channel length on the assessment accuracy, is analysed and; c) the effect of the channel size and shape on measurement errors is examined. The three methods considered to determine the cross sectional areas were: micro-topographic profile meter (1); detailed measurement of section characteristic lengths with a tape (2); measurement of cross section width and depth with a tape (3). Five reaches of different ephemeral gully types 14.0 or 30.0 m long and a set of six 20.4 to 29.4 m long rill reaches were selected. On each gully reach, the cross sectional areas were measured using the three above mentioned methods, with a separation (s) between cross sections of 1 m. For rills, the cross sectional areas were measured with methods 1 and 3, with s= 2 m. Then, the corresponding total erosion volumes were computed. The volume calculated with method 1 with s= 1 m for gullies and s= 2 m for rills was taken as the reference method. For each channel, and for each one of the possible combinations of s and measurement method (m), the relative measurement error and the absolute value of the relative measurement error (Ersm and |Ersm| ), defined with respect to the reference one, was calculated. |Ersm| much higher than 10% were obtained very easily, even for small s values and for apparently quasi prismatic channels. Channel size and shape had a great influence on measurement errors. In fact, the selection of the more suitable method for a certain gully shape and size seemed to be much more important than s, at least when s< 10 m. Method 1 always provided the most precise measurements, and its results were the less dependent on s. However, s must be <5 m to guarantee an error smaller than 10%. Method 2 is not recommended, because it is difficult, time consuming and can lead to large errors. Method 3 seems to be enough for small, wide and shallow gullies, and for small rills, but only if s is shorter than 5 m. Results obtained after the analysis of rill measurement errors were similar to those of gullies. The analysis of Ersm and |Ersm| when calculating channel volumes using a unique representative cross section highlighted the importance of correctly selecting the adequate cross section. Due to the high error values that this method can entail, it is not considered as advisable whenever accurate erosion measurements are pursued.