Casalí Sarasíbar, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Casalí Sarasíbar

First Name

Javier

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    Evaluation of the impact of changing from rainfed to irrigated agriculture in a mediterranean watershed in Spain
    (MDPI, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Alfaro Echarri, Alberto; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    The conversion of cultivated areas from rainfed to irrigated agriculture alters the watershed’s hydrology and could affect the water quality and quantity. This study examined how streamflow, nitrate load, and nitrate concentration changed after irrigation implementation in a Mediterranean watershed in Navarre, Spain. The Soil Water Assessment Tool (SWAT) model was applied in the Cidacos River watershed to simulate streamflow and nitrate load under rainfed conditions. The simulated outputs were then compared with the post-irrigation observed values from mid-2017 to 2020 at the watershed outlet in Traibuenas to determine the irrigation impact. The model calibration (2000–2010) and validation (2011–2020) results for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68) were satisfactory, indicating the model’s suitability for use in the watershed. A comparison of the rainfed and post-irrigation periods showed an average annual increase in streamflow (952.33 m3 ha−1, +18.8%), nitrate load (68.17 kg ha−1, +62.3%), and nitrate concentration (0.89 mg L−1 ha−1, +79%) at the watershed outlet. Irrigation also caused seasonal changes by altering the cropping cycle and increasing the streamflow and nitrate export during the summer and autumn when irrigation was at its peak. The increases in the post-irrigation period were attributed to the added irrigation water for streamflow and increased nitrogen fertilizer application due to changes in cropping for nitrate concentration and export. These findings are useful to farmers and managers in deciding the best nitrate pollution control and management measures to implement. Furthermore, these results could guide future development and expansion of irrigated lands to improve agricultural sustainability.
  • PublicationOpen Access
    Assessment of the main factors affecting the dynamics of nutrients in two rainfed cereal watersheds
    (Elsevier, 2020) Hernández García, Iker; Merchán Elena, Daniel; Aranguren Erice, Itxaso; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Nutrient dynamics and factors that control nutrient exports were observed in two watersheds, namely Latxaga and La Tejería, with similar climatic and management characteristics throughout 10 years (2007–2016). Similar patterns were observed in intra-annual and inter-annual dynamics with higher NO3 − concentration and NO3 −-N yield during the humid seasons (i.e., winters and hydrological year 2013). Regarding concentration, Latxaga showed a higher decrease of nitrate due to a higher development of vegetated areas. High discharge events produced nitrate dilution due to the presence of tile-drainage at La Tejeria. At Latxaga, where tile-drainage was not observed, an increase in concentration occurred as a response to high discharge events. Comparing both watersheds, La Tejería presented ca. 73 ± 25 mg NO3 − L−1 while at Latxaga, the concentration observed was almost three times lower, with ca. 21 ± 15 mg NO3 − L−1 throughout the study period. Similar patterns were observed for the NO3 −-N yield, with 32 kg NO3 −-N ha−1 year−1 and 17 kg NO3 −-N ha−1 year−1 at La Tejería and Latxaga, respectively. Regarding phosphorous, the observed concentrations were 0.20 ± 0.72 mg PO4 3− L−1 and 0.06 ± 0.38 mg PO4 3− L−1 at La Tejería and Latxaga, respectively, with PO4 3−-P yields being 71 kg PO4 3−-P ha−1 year−1 and 33 kg PO4 3−-P ha−1 year−1. Annual phosphate-P yield distribution in both watersheds followed similar patterns to those observed for the nitrate-N yield, with higher yields in the humid season. Regarding concentration, highly erosive rainfall that occurred in summer, mobilizing sediments and probably generating desorption of phosphorous in the stream channel, increased phosphate concentration. This research adds to the knowledge base regarding the dynamics of nutrients and the controlling factors in complex agricultural systems with Mediterranean characteristics.
  • PublicationOpen Access
    Photogrammetrical and field measurement of gullies with contrasting morphology
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Marzolff, I.; Giménez Díaz, Rafael; Seeger, M.; Campo-Bescós, Miguel; Ries, J. B.; Casalí Sarasíbar, Javier; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Despite a wealth of studies on monitoring different types of gullies by using remote-sensing technique such as photogrammetry, relatively few efforts have been made to test their accuracy. Therefore the question arises as to what extent the accuracy of gully monitoring using photogrammetric technique depends on gully morphology. The objective of this work is to investigate this issue. To do that, we confront field measurements of cross-sectional areas of gullies with contrasting morphology with a similar dataset obtained using photogrammetry. Below, we present the first findings of this investigation.
  • PublicationOpen Access
    Assessment of soil factors controlling ephemeral gully erosion on agricultural fields
    (Wiley, 2017) Ollobarren del Barrio, Paul; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion.
  • PublicationOpen Access
    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin
    (MDPI, 2020) Peña-Angulo, Dahis; Nadal-Romero, Estela; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.
  • PublicationOpen Access
    Evaluation of a gully headcut retreat model using multitemporal aerial photographs and digital elevation models
    (American Geophysical Union, 2013) Campo-Bescós, Miguel; Flores Cervantes, J. H.; Bras, R. L.; Casalí Sarasíbar, Javier; Giráldez Cervera, Juan Vicente; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A large fraction of soil erosion in temperate climate systems proceeds from gully headcut growth processes. Nevertheless, headcut retreat is not well understood. Few erosion models include gully headcut growth processes, and none of the existing headcut retreat models have been tested against long-term retreat rate estimates. In this work the headcut retreat resulting from plunge pool erosion in the Channel Hillslope Integrated Landscape Development (CHILD) model is calibrated and compared to long-term evolution measurements of six gullies at the Bardenas Reales, northeast Spain. The headcut retreat module of CHILD was calibrated by adjusting the shape factor parameter to fit the observed retreat and volumetric soil loss of one gully during a 36 year period, using reported and collected field data to parameterize the rest of the model. To test the calibrated model, estimates by CHILD were compared to observations of headcut retreat from five other neighboring gullies. The differences in volumetric soil loss rates between the simulations and observations were less than 0.05 m3 yr-1, on average, with standard deviations smaller than 0.35 m3 yr-1. These results are the first evaluation of the headcut retreat module implemented in CHILD with a field data set. These results also show the usefulness of the model as a tool for simulating long-term volumetric gully evolution due to plunge pool erosion.
  • PublicationOpen Access
    Accuracy of methods for field assessment of rill and ephemeral gully erosion
    (Elsevier, 2006) Casalí Sarasíbar, Javier; Loizu Maeztu, Javier; Campo-Bescós, Miguel; Santisteban Comino, Luisa María de; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    To properly assess soil erosion in agricultural areas, it is necessary to determine precisely the volume of ephemeral gullies and rills in the field by using direct measurement procedures. However, little information is available on the accuracy of the different methods used. The main purpose of this paper is to provide information for a suitable assessment of rill and ephemeral gully erosion with such direct measurement methods. To achieve this objective: a) the measurement errors associated to three methods used for field assessment of channel cross sectional areas are explored; b) the influence of the number of cross sections used per unit channel length on the assessment accuracy, is analysed and; c) the effect of the channel size and shape on measurement errors is examined. The three methods considered to determine the cross sectional areas were: micro-topographic profile meter (1); detailed measurement of section characteristic lengths with a tape (2); measurement of cross section width and depth with a tape (3). Five reaches of different ephemeral gully types 14.0 or 30.0 m long and a set of six 20.4 to 29.4 m long rill reaches were selected. On each gully reach, the cross sectional areas were measured using the three above mentioned methods, with a separation (s) between cross sections of 1 m. For rills, the cross sectional areas were measured with methods 1 and 3, with s= 2 m. Then, the corresponding total erosion volumes were computed. The volume calculated with method 1 with s= 1 m for gullies and s= 2 m for rills was taken as the reference method. For each channel, and for each one of the possible combinations of s and measurement method (m), the relative measurement error and the absolute value of the relative measurement error (Ersm and |Ersm| ), defined with respect to the reference one, was calculated. |Ersm| much higher than 10% were obtained very easily, even for small s values and for apparently quasi prismatic channels. Channel size and shape had a great influence on measurement errors. In fact, the selection of the more suitable method for a certain gully shape and size seemed to be much more important than s, at least when s< 10 m. Method 1 always provided the most precise measurements, and its results were the less dependent on s. However, s must be <5 m to guarantee an error smaller than 10%. Method 2 is not recommended, because it is difficult, time consuming and can lead to large errors. Method 3 seems to be enough for small, wide and shallow gullies, and for small rills, but only if s is shorter than 5 m. Results obtained after the analysis of rill measurement errors were similar to those of gullies. The analysis of Ersm and |Ersm| when calculating channel volumes using a unique representative cross section highlighted the importance of correctly selecting the adequate cross section. Due to the high error values that this method can entail, it is not considered as advisable whenever accurate erosion measurements are pursued.
  • PublicationOpen Access
    EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water
    (Nature Research, 2023-08-04) Matthews, Francis; Verstraeten, Gert; Borrelli, Pasquale; Vanmaercke, Matthias; Poesen, J.; Steegen, An; Degré, Aurore; Cárceles Rodríguez, Belén; Bielders, Charles; Franke, Christine; Alary, Claire; Zumr, David; Patault, Edouard; Nadal-Romero, Estela; Smolska, Ewa; Licciardello, Feliciana; Swerts, Gilles; Thodsen, Hans; Casalí Sarasíbar, Javier; Eslava, Javier; Richet, Jean-Baptiste; Ouvry, Jean-François; Farguell, Joaquim; Święchowicz, Jolanta; Nunes, João Pedro; Pak, Lai Ting; Liakos, Leonidas ; Campo-Bescós, Miguel; Żelazny, Mirosław; Delaporte, Morgan; Pineux, Nathalie; Henin, Nathan; Bezak, Nejc; Lana Renault, Noemí ; Tzoraki, Ourania; Giménez Díaz, Rafael; Li, Tailin; Durán Zuazo, Víctor Hugo; Bagarello, Vincenzo; Pampalone, Vincenzo; Ferro, Vito; Úbeda, Xavier; Panagos, Panos; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of openaccess data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km2, min = 0.04 km2, max = 817 km2) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO).
  • PublicationOpen Access
    Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden
    (Elsevier, 2023) Oduor, Brian Omondi; Campo-Bescós, Miguel; Lana Renault, Noemí; Kyllmar, Katarina; Mårtensson, Kristina; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Agricultural activities contribute to water pollution through sediments and nutrient export, negatively affecting water quality and aquatic ecosystems. However, implementing best management practices (BMPs) could help control sediments and nutrient losses from agricultural catchments. This study used the Soil Water Assessment Tool (SWAT) model to assess the effectiveness of four BMPs in reducing sediment and phosphorus export in a small agricultural catchment (33 km2) in southeastern Sweden. The SWAT model was first evaluated for its ability to simulate streamflow, sediment load, and total phosphorous load from 2005 to 2020. Then, the calibrated parameters were used to simulate the agricultural BMP scenarios by modifying relevant parameters. The model performed satisfactorily during calibration and validation for streamflow (NSE = 0.80/0.84), sediment load (NSE = 0.67/0.69), and total phosphorous load (NSE = 0.61/0.62), indicating its suitability for this study. The results demonstrate varying effects of BMP implementation on sediment and phosphorus (soluble and total) export, with no significant change in streamflow. Filter strips were highly effective in reducing sediment (−32%), soluble phosphorus (−67%), and total phosphorous (−66%) exports, followed by sedimentation ponds with −35%, −36%, and −50% reductions, respectively. Grassed waterways and no-tillage were less impactful on pollutant reduction, with grassed waterways showing a slight increase (+4%) in soluble phosphorus and no-tillage having a minimal effect on sediment (−1.3%) and total phosphorus (−0.2%) export. These findings contribute to the ongoing efforts to mitigate sediment and nutrient pollution in Swedish agricultural areas, thereby supporting the conservation and restoration of aquatic ecosystems, and enhancing sustainable agricultural practices.
  • PublicationOpen Access
    Effect of topography on retreat rate of different gully headcuts in Bardenas Reales area (Navarre, Spain)
    (Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 2007) Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    In Northeast Spain, gullying is a widespread phenomenon. This type of erosion is especially intense in Bardenas Reales (Navarre) where at least two major typical kinds of gully headcut are present. A first group developed in soil material (named, conventional gully headcut), and second group of gully headcut with a sandstone layer as a top horizon (named, sandstone gully headcut). In addition, within the former group, we can distinguish a subgroup of gully headcuts developed in soils particularly prone to piping and tunnelling due to the dispersive condition of the materials (named piping associated gully headcut). In this situation, a question arises: to what extent simple topographic parameters account for the retreat rate of the different kind of gully headcuts observed in the region of Bardenas Reales? The aim of this study was to investigate and gain insight in this issue.