Bedregal, Benjamin

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bedregal

First Name

Benjamin

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems
    (Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.
  • PublicationOpen Access
    Improving the performance of fuzzy rule-based classification systems based on a nonaveraging generalization of CC-integrals named C-F1F2-integrals
    (IEEE, 2019) Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Bedregal, Benjamin; Sanz Delgado, José Antonio; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    A key component of fuzzy rule-based classification systems (FRBCS) is the fuzzy reasoning method (FRM) since it infers the class predicted for new examples. A crucial stage in any FRM is the way in which the information given by the fired rules during the inference process is aggregated. A widely used FRM is the winning rule, which applies the maximum to accomplish this aggregation. The maximum is an averaging operator, which means that its result is within the range delimited by the minimum and the maximum of the aggregated values. Recently, new averaging operators based on generalizations of the Choquet integral have been proposed to perform this aggregation process. However, the most accurate FRBCSs use the FRM known as additive combination that considers the normalized sum as the aggregation operator, which is nonaveraging. For this reason, this paper is aimed at introducing a new nonaveraging operator named C-F1F2-integral, which is a generalization of the Choquet-like Copula-based integral (CC-integral). C-F1F2-integrals present the desired properties of an aggregation-like operator since they satisfy appropriate boundary conditions and have some kind of increasingness property. We show that C-F1F2 -integrals, when used to cope with classification problems, enhance the results of the previous averaging generalizations of the Choquet integral and provide competitive results (even better) when compared with state-of-the-art FRBCSs.
  • PublicationOpen Access
    The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions
    (Elsevier, 2019) Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Pintor Borobia, Jesús María; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería
    Overlap and grouping functions are special kinds of non necessarily associative aggregation operators proposed for many applications, mainly when the associativity property is not strongly required. The classes of overlap and grouping functions are richer than the classes of t-norms and t-conorms, respectively, concerning some properties like idempotency, homogeneity, and, mainly, the self-closedness feature with respect to the convex sum and the aggregation by generalized composition of overlap/grouping functions. In previous works, we introduced some classes of fuzzy implications derived by overlap and/or grouping functions, namely, the residual implications R-0-implications, the strong implications (G, N)-implications and the Quantum Logic implications QL-implications, for overlap functions O, grouping functions G and fuzzy negations N. Such implications do not necessarily satisfy certain properties, but only weaker versions of these properties, e.g., the exchange principle. However, in general, such properties are not demanded for many applications. In this paper, we analyze the so-called law of O-Conditionality, O(x, 1(x, y)) <= y, for any fuzzy implication I and overlap function O, and, in particular, for Ro-implications, (G, N)-implications, QL-implications and D-implications derived from tuples (O, G, N), the latter also introduced in this paper. We also study the conditional antecedent boundary condition for such fuzzy implications, since we prove that this property, associated to the left ordering property, is important for the analysis of the O-Conditionality. We show that the use of overlap functions to implement de generalized Modus Ponens, as the scheme enabled by the law of O-Conditionality, provides more generality than the laws of T-conditionality and U-conditionality, for t-norms T and uninorms U, respectively.
  • PublicationOpen Access
    On some classes of nullnorms and h-pseudo homogeneity
    (Elsevier, 2022) Lima, Lucélia; Bedregal, Benjamin; Rocha, Marcus; Castillo López, Aitor; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Nullnorms are aggregation functions which generalize t-norms and t-conorms. For each nullnorm there exists an annihilator element such that, below it, the function behaves like a t-conorm, and, above it, like a t-norm. In this paper, we study some classes of nullnorms which naturally arise from well known classes of t-norms and t-conorms, such as idempotent, Archimedean, cancellative, positive and nilpotent t-norms and t-conorms. We also present the concept of h-pseudo-homogeneous nullnorm and we study when these classes of nullnorms fullfill it.
  • PublicationOpen Access
    Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions
    (Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.
  • PublicationOpen Access
    d-Choquet integrals: Choquet integrals based on dissimilarities
    (Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.
  • PublicationOpen Access
    On fuzzy implications derived from general overlap functions and their relation to other classes
    (MDPI, 2023) Pinheiro, Jocivania; Santos, Helida; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    There are distinct techniques to generate fuzzy implication functions. Despite most of them using the combination of associative aggregators and fuzzy negations, other connectives such as (general) overlap/grouping functions may be a better strategy. Since these possibly non-associative operators have been successfully used in many applications, such as decision making, classification and image processing, the idea of this work is to continue previous studies related to fuzzy implication functions derived from general overlap functions. In order to obtain a more general and flexible context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also investigate their properties, the aggregation of (GO, N)-implication functions, their characterization and the intersections with other classes of fuzzy implication functions.
  • PublicationOpen Access
    Pre-aggregation functions: construction and an application
    (IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    In this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.
  • PublicationOpen Access
    Admissible OWA operators for fuzzy numbers
    (Elsevier, 2024) García-Zamora, Diego; Cruz, Anderson; Neres, Fernando; Santiago, Regivan; Roldán López de Hierro, Antonio Francisco; Paiva, Rui; Pereira Dimuro, Graçaliz; Martínez López, Luis; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Ordered Weighted Averaging (OWA) operators are some of the most widely used aggregation functions in classic literature, but their application to fuzzy numbers has been limited due to the complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible order for fuzzy numbers provides an effective method to totally order them by refining a given partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers with respect to admissible orders and investigating their properties. Firstly, we define the OWA operators associated with such admissible orders and then we show their main properties. Afterward, an example is presented to illustrate the applicability of these AOWA operators in linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal fuzzy numbers that can be efficiently applied in practice.
  • PublicationOpen Access
    Aggregation of individual rankings through fusion functions: criticism and optimality analysis
    (IEEE, 2020) Bustince Sola, Humberto; Bedregal, Benjamin; Campión Arrastia, María Jesús; Silva, Ivanoska da; Fernández Fernández, Francisco Javier; Induráin Eraso, Esteban; Raventós Pujol, Armajac; Santiago, Regivan; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    Throughout this paper, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice where well-known impossibility results as the Arrovian ones are encountered and the decision-making approaches where the necessity of fusing rankings is unavoidable. Moreover it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice one should look for the maximal elements with respect to such orders defined on rankings IEEE.