Person:
Urroz Unzueta, José Carlos

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Urroz Unzueta

First Name

José Carlos

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0001-8432-3242

person.page.upna

1730

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Optical fiber sensor for water velocity measurement in rivers and channels
    (Nature Research, 2024) Rodríguez Rodríguez, Armando; Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Bravo Acha, Mikel; López Rodríguez, José Javier; López-Amo Sáinz, Manuel; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this work, optical fiber Bragg grating sensors were used to measure water velocity and examine how it was distributed in open channels. Several types of coatings were incorporated into the design of the sensors to examine their effects on the strain that the fibers experienced as a result of the water flow. Due to their low elastic coefficient, which reduced the hysteresis, the results indicated that the aluminum- and acrylate-coated fibers had the best performance. ANSYS-CFX V2020 R2 software was used to model the strain encountered by the fibers under various flow rates to assess the performance of the FBG sensors. The calculations and actual data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water velocity. The study illustrated the usability of the proposal in both scenarios by contrasting its application in rivers and channels.
  • PublicationOpen Access
    Aluminum coated fiber optic sensor for enhancing flow rate measurement
    (SPIE, 2023) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A water flow and velocity aluminum-coated Fiber Bragg Grating sensor system for open channels was designed, simulated and tested. The sensing head was designed, ruggedized and customized to measure velocities at different depths, in order to calculate the discharge in open channels. This paper shows, for the first time to our knowledge, the simulation of such kind of fiber sensors in open channels.
  • PublicationOpen Access
    Development of a water flow and velocity optical fiber sensor for field testing
    (Optica Publishing Group, 2022) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A water flow and velocity fiber optic sensor system was developed and tested. The sensing head was especially developed and ruggedized to measure velocities at different depths, in order to calculate the discharge in channels.