Person: Urroz Unzueta, José Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Urroz Unzueta
First Name
José Carlos
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
0000-0001-8432-3242
person.page.upna
1730
Name
15 results
Search Results
Now showing 1 - 10 of 15
Publication Open Access Aluminum coated fiber optic sensor for enhancing flow rate measurement(SPIE, 2023) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA water flow and velocity aluminum-coated Fiber Bragg Grating sensor system for open channels was designed, simulated and tested. The sensing head was designed, ruggedized and customized to measure velocities at different depths, in order to calculate the discharge in open channels. This paper shows, for the first time to our knowledge, the simulation of such kind of fiber sensors in open channels.Publication Open Access Aumento de potencia en un motor comercial de encendido provocado alimentado con hidrógeno: mezclas hidrógeno-metano y combustiones anómalas(2020) Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gandía Pascual, Luis; Ingeniería; IngeniaritzaEste trabajo se ha centrado en el aumento de potencia de un motor comercial de encendido provocado alimentado con hidrógeno. La extremadamente baja densidad del hidrógeno conlleva una menor potencia, frente a otros combustibles como la gasolina, por unidad de cilindrada del motor. Con el objetivo de paliar esta deficiencia, el presente trabajo se centra en dos líneas de investigación. En primer lugar, se estudian las mezclas de hidrógeno con metano, compuesto éste de alto contenido energético por unidad de volumen. En segundo lugar, se analizan las combustiones anómalas, problemática inherente a los combustibles, pero muy determinante para el hidrógeno debido a su elevada reactividad química.Publication Unknown Optical fiber sensor for water velocity measurement in rivers and channels(Nature Research, 2024) Rodríguez Rodríguez, Armando; Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Bravo Acha, Mikel; López Rodríguez, José Javier; López-Amo Sáinz, Manuel; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this work, optical fiber Bragg grating sensors were used to measure water velocity and examine how it was distributed in open channels. Several types of coatings were incorporated into the design of the sensors to examine their effects on the strain that the fibers experienced as a result of the water flow. Due to their low elastic coefficient, which reduced the hysteresis, the results indicated that the aluminum- and acrylate-coated fibers had the best performance. ANSYS-CFX V2020 R2 software was used to model the strain encountered by the fibers under various flow rates to assess the performance of the FBG sensors. The calculations and actual data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water velocity. The study illustrated the usability of the proposal in both scenarios by contrasting its application in rivers and channels.Publication Unknown Hydrogen gas-grilling in meat: impact on odor profile and contents of polycyclic aromatic hydrocarbons and volatile organic compounds(MDPI, 2024) Beriain Apesteguía, María José; Gómez Bastida, Inmaculada; García Murillo, Susana; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Ibáñez Moya, Francisco C.; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias; ZientziakThe effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An electronic nose was used to evaluate the odor profile. Total high-molecular-weight PAHs ranged from 19.59 to 28.65 µg/kg with butane and from 1.83 to 1.61 µg/kg with hydrogen. Conversely, total low-molecular-weight PAHs went from 184.41 to 286.03 µg/kg with butane and from 36.88 to 41.63 µg/kg with hydrogen. Aldehydes and alkanes were the predominant family in a total of 59 VOCs. Hydrogen gas-grilling reduced significantly (p < 0.05) the generation of VOCs related to lipid oxidation. The odor profile was not modified significantly despite the change of PAHs and VOCs. The findings indicate that hydrogen is a viable alternative to butane for grilling horse meat. Hydrogen gas-grilling may be regarded as a safe cooking procedure of meat from a PAH contamination point and perhaps sustainable environmentally compared to a conventional technique. The present study provides the basis for the use of hydrogen gas in grilled meat.Publication Open Access Design of optical fiber Bragg grating-based sensors for flow measurement in pipes(Taylor & Francis, 2023) Diéguez Elizondo, Pedro; Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; López Rodríguez, José Javier; López-Amo Sáinz, Manuel; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this work, optical Fiber Bragg grating (FBG) sensors were used to measure water flow in pipes. Several types of coatings were incorporated into the design of the sensors to examine their effects on the elastic strain that the fiber underwent as a result of the water flow. ANSYS-CFX V2020 R2 software was used to model the elastic strain encountered by the fiber under various flow rates in order to assess the performance of the FBG sensors. The calculations and experimental data exhibited good convergence, demonstrating the accuracy of the FBG sensors in determining water flow. These calculations and procedures can be extrapolated to any other fluid.Publication Open Access Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements(Elsevier, 2018) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Sáinz Casas, David; Machin, J.; Arana Burgui, Miguel; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2Abnormal combustion phenomena are among the main hurdles for the introduction of hydrogen in the transportation sector through the use of internal combustion engines (ICEs). For that reason the challenge is to guarantee operation free from combustion anomalies at conditions close to the ones giving the best engine output (maximum brake torque and power). To this end, an early and accurate detection of abnormal combustion events is decisive in order to allow the electronic control unit deciding suitable correcting actions. In this work, an automotive size 4-cylinder 1.4 L naturally aspirated port-fuel injection spark ignition Volkswagen engine adapted to run on hydrogen has been investigated. Three distinct methods (in-cylinder pressure, block-engine vibration and acoustic measurements) have been employed to detect abnormal combustion phenomena provoked through the enrichment of the hydrogen-air mixture fed to the cylinders under a wide range of engine speeds (1000–5000 rpm). It has been found that the high-frequency components of the in-cylinder pressure and block engine acceleration signals obtained after a Fourier transform analysis can be used for very sensitive detection of knocking combustion cycles. In the case of the ambient noise measurements, a spectral analysis in terms of third octave bands of the signal recorded by a microphone allowed an accurate characterization. Combustion anomalies could be detected through more intense octave bands at frequencies between 250 Hz and 4 kHz in the case of backfire and between 8 kHz and 20 kHz for knock. Computational fluid dynamics simulations performed indicated that some characteristics of the engine used such as the cylinder valves dimensions and the hydrogen flow rate delivered by the injectors play important roles conditioning the likelihood of suffering backfire events.Publication Unknown Conversion of a commercial spark ignition engine to run on hydrogen: performance comparison using hydrogen and gasoline(Elsevier, 2010) Sopena Serna, Carlos; Diéguez Elizondo, Pedro; Sáinz Casas, David; Urroz Unzueta, José Carlos; Guelbenzu, E.; Gandía Pascual, Luis; Ingeniería; IngeniaritzaThe modifications performed to convert the spark ignition gasoline-fueled internal combustion engine of a Volkswagen Polo 1.4 to run with hydrogen are described. The car is representative of small vehicles widely used for both city and interurban traffic. Main changes included the inlet manifold, gas injectors, oil radiator and the electronic management unit. Injection and ignition advance timing maps were developed for lean mixtures with values of the air to hydrogen equivalence ratio (λ) between 1.6 and 3. The established engine control parameters allowed the safe operation of the hydrogen-fueled engine (H2ICE) free of knock, backfire and pre-ignition as well with reasonably low NOx emissions. The H2ICE reached best brake torque of 63 Nm at 3800 rpm and maximum brake power of 32 kW at 5000 rpm. In general, the brake thermal efficiency of the H2ICE is greater than that of gasoline-fueled engine except for the H2ICE working at very lean conditions (λ = 2.5) and high speeds (above 4000 rpm). A significant effect of the spark advance on the NOx emissions has been found, specially for relatively rich mixtures (λ < 2). Small changes of spark advance with respect to the optimum value for maximum brake torque give rise to an increase of pollutant emissions. It has been estimated that the hydrogen-fueled Volkswagen Polo could reach a maximum speed of 140 km/h with the adapted engine. Moreover, there is enough reserve of power for the vehicle moving on typical urban routes and routes with slopes up to 10%.Publication Open Access Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures(Elsevier, 2014) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Sáinz Casas, David; Gandía Pascual, Luis; Ingeniería; IngeniaritzaThe use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4 L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7 wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.Publication Open Access Gaseous fueling of an adapted commercial automotive spark-ignition engine: simplified thermodynamic modeling and experimental study running on hydrogen, methane, carbon monoxide and their mixtures(Elsevier, 2023) Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Arzamendi Manterola, María Cruz; Arana Burgui, Miguel; Gandía Pascual, Luis; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the present work, methane, carbon monoxide, hydrogen and the binary mixtures 20 % CH4–80 % H2, 80 % CH4–20 % H2, 25 % CO–75 % H2 (by volume) were considered as fuels of a naturally aspirated port-fuel injection four-cylinder Volkswagen 1.4 L spark-ignition (SI) engine. The interest in these fuels lies in the fact that they can be obtained from renewable resources such as the fermentation or gasification of residual biomasses as well as the electrolysis of water with electricity of renewable origin in the case of hydrogen. In addition, they can be used upon relatively easy modifications of the engines, including the retrofitting of existing internal combustion engines. It has been found that the engine gives similar performance regardless the gaseous fuel nature if the air–fuel equivalence ratio (λ) is the same. Maximum brake torque and mean effective pressure values within 45–89 N⋅m and 4.0–8.0 bar, respectively, have been obtained at values of λ between 1 and 2 at full load, engine speed of 2000 rpm and optimum spark-advance. In contrast, the nature of the gaseous fuel had great influence upon the range of λ values at which a fuel (either pure or blend) could be used. Methane and methane-rich mixtures with hydrogen or carbon monoxide allowed operating the engine at close to stoichiometric conditions (i.e. 1 < λ < 1.5) yielding the highest brake torque and mean effective pressure values. On the contrary, hydrogen and hydrogen-rich mixtures with methane or carbon monoxide could be employed only in the very fuel-lean region (i.e. 1.5 < λ < 2). The behavior of carbon monoxide was intermediate between that of methane and hydrogen. The present study extends and complements previous works in which the aforementioned fuels were compared only under stoichiometric conditions in air (λ = 1). In addition, a simple zero-dimensional thermodynamic combustion model has been developed that allows describing qualitatively the trends set by the several fuels. Although the model is useful to understand the influence of the fuels properties on the engine performance, its predictive capability is limited by the simplifications made.Publication Open Access Development of a water flow and velocity optical fiber sensor for field testing(Optica Publishing Group, 2022) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA water flow and velocity fiber optic sensor system was developed and tested. The sensing head was especially developed and ruggedized to measure velocities at different depths, in order to calculate the discharge in channels.