Person:
Urroz Unzueta, José Carlos

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Urroz Unzueta

First Name

José Carlos

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0001-8432-3242

person.page.upna

1730

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Aumento de potencia en un motor comercial de encendido provocado alimentado con hidrógeno: mezclas hidrógeno-metano y combustiones anómalas
    (2020) Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    Este trabajo se ha centrado en el aumento de potencia de un motor comercial de encendido provocado alimentado con hidrógeno. La extremadamente baja densidad del hidrógeno conlleva una menor potencia, frente a otros combustibles como la gasolina, por unidad de cilindrada del motor. Con el objetivo de paliar esta deficiencia, el presente trabajo se centra en dos líneas de investigación. En primer lugar, se estudian las mezclas de hidrógeno con metano, compuesto éste de alto contenido energético por unidad de volumen. En segundo lugar, se analizan las combustiones anómalas, problemática inherente a los combustibles, pero muy determinante para el hidrógeno debido a su elevada reactividad química.
  • PublicationOpen Access
    Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine
    (Elsevier, 2020) Ortiz Imedio, Rafael; Ortiz, A.; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Gorri, D.; Gandía Pascual, Luis; Ortiz, I.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería
    In this study, coke oven gas (COG), a by-product of coke manufacture with a high volumetric percentage of H2 and CH4, has been identified as auxiliary support and promising energy source in stationary internal combustion engines. Engine performance (power and thermal efficiency) and emissions (NOx, CO, CO2 and unburned hydrocarbons) of COG, pure H2 and pure CH4 have been studied on a Volkswagen Polo 1.4 L port-fuel injection spark ignition engine. Experiments have been done at optimal spark advance and wide open throttle, at different speeds (2000–5000 rpm) and various air-fuel ratios (λ) between 1 and 2. The obtained data revealed that COG combines the advantages of pure H2 and pure CH4, widening the λ range of operation from 1 to 2, with very good performance and emissions results comparable to pure gases. Furthermore, it should be highlighted that this approach facilitates the recovery of an industrial waste gas.
  • PublicationOpen Access
    Gaseous fueling of an adapted commercial automotive spark-ignition engine: simplified thermodynamic modeling and experimental study running on hydrogen, methane, carbon monoxide and their mixtures
    (Elsevier, 2023) Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Arzamendi Manterola, María Cruz; Arana Burgui, Miguel; Gandía Pascual, Luis; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present work, methane, carbon monoxide, hydrogen and the binary mixtures 20 % CH4–80 % H2, 80 % CH4–20 % H2, 25 % CO–75 % H2 (by volume) were considered as fuels of a naturally aspirated port-fuel injection four-cylinder Volkswagen 1.4 L spark-ignition (SI) engine. The interest in these fuels lies in the fact that they can be obtained from renewable resources such as the fermentation or gasification of residual biomasses as well as the electrolysis of water with electricity of renewable origin in the case of hydrogen. In addition, they can be used upon relatively easy modifications of the engines, including the retrofitting of existing internal combustion engines. It has been found that the engine gives similar performance regardless the gaseous fuel nature if the air–fuel equivalence ratio (λ) is the same. Maximum brake torque and mean effective pressure values within 45–89 N⋅m and 4.0–8.0 bar, respectively, have been obtained at values of λ between 1 and 2 at full load, engine speed of 2000 rpm and optimum spark-advance. In contrast, the nature of the gaseous fuel had great influence upon the range of λ values at which a fuel (either pure or blend) could be used. Methane and methane-rich mixtures with hydrogen or carbon monoxide allowed operating the engine at close to stoichiometric conditions (i.e. 1 < λ < 1.5) yielding the highest brake torque and mean effective pressure values. On the contrary, hydrogen and hydrogen-rich mixtures with methane or carbon monoxide could be employed only in the very fuel-lean region (i.e. 1.5 < λ < 2). The behavior of carbon monoxide was intermediate between that of methane and hydrogen. The present study extends and complements previous works in which the aforementioned fuels were compared only under stoichiometric conditions in air (λ = 1). In addition, a simple zero-dimensional thermodynamic combustion model has been developed that allows describing qualitatively the trends set by the several fuels. Although the model is useful to understand the influence of the fuels properties on the engine performance, its predictive capability is limited by the simplifications made.