Person:
Alonso Roldán, Marta

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Alonso Roldán

First Name

Marta

person.page.departamento

Ciencias de la Salud

person.page.instituteName

ORCID

0000-0002-7520-7351

person.page.upna

5026

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Oncolytic adenovirus Delta-24-RGD induces a widespread glioma proteotype remodeling during autophagy
    (Elsevier, 2018) González Morales, Andrea; Zabaleta, Aintzane; García Moure, Marc; Alonso Roldán, Marta; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Adenovirus Delta-24-RGD has shown a remarkable efficacy in a phase I clinical trial for glioblastoma. Delta-24-RGD induces autophagy in glioma cells, however, the molecular derangements associated with Delta-24-RGD infection remains poorly understood. Here, proteomics was applied to characterize the glioma metabolic disturbances soon after Delta-24-RGD internalization and late in infection. Minutes post-infection, a rapid survival reprogramming of glioma cells was evidenced by an early c-Jun activation and a time-dependent dephosphorylation of multiple survival kinases. At 48 h post-infection (hpi), a severe intracellular proteostasis impairment was characterized, detecting differentially expressed proteins related to mRNA splicing, cytoskeletal organization, oxidative response, and inflammation. Specific kinase-regulated protein interactomes for Delta-24-RGD-modulated proteome revealed interferences with the activation dynamics of protein kinases C and A (PKC, PKA), tyrosine-protein kinase Src (c-Src), glycogen synthase kinase-3 (GSK-3) as well as serine/threonine-protein phosphatases 1 and 2A (PP1, PP2A) at 48hpi, in parallel with adenoviral protein overproduction. Moreover, the late activation of the nuclear factor kappa B (NF-κB) correlates with the extracellular increment of specific cytokines involved in migration, and activation of different inflammatory cells. Taken together, our integrative analysis provides further insights into the effects triggered by Delta-24-RGD in the modulation of tumor suppression and immune response against glioma. Significance: The current study provides new insights regarding the molecular mechanisms governing the glioma metabolism during Delta-24-RGD oncolytic adenoviral therapy. The compilation and analysis of intracellular and extracellular proteomics have led us to characterize: i) the cell survival reprogramming during Delta-24-RGD internalization, ii) the proteostatic disarrangement induced by Delta-24-RGD during the autophagic stage, iii) the protein interactomes for Delta-24-RGD-modulated proteome, iv) the regulatory effects on kinase dynamics induced by Delta-24-RGD late in infection, and v) the overproduction of multitasking cytokines upon Delta-24-RGD treatment. We consider that the quantitative molecular maps generated in this study may establish the foundations for the development of complementary adenoviral based-vectors to increase the potency against glioma.
  • PublicationOpen Access
    Spatial and temporal proteome dynamics of glioma cells during oncolytic adenovirus Delta-24-RGD infection
    (Impact Journals, 2018) González Morales, Andrea; Zabaleta, Aintzane; Guruceaga, Elizabeth; Alonso Roldán, Marta; García Moure, Marc; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant glioma. Oncolytic adenoviruses are being modified to exploit the aberrant expression of proteins in tumor cells to increase the antiglioma efficacy. E1A mutant adenovirus Delta-24-RGD (DNX-2401) has shown a favorable toxicity profile and remarkable efficacy in a first-in-human phase I clinical trial. However, the comprehensive modulation of glioma metabolism in response to Delta-24-RGD infection is poorly understood. Integrating mass spectrometry based-quantitative proteomics, physical and functional interaction data, and biochemical approaches, we conducted a cell-wide study of cytosolic, nuclear, and secreted glioma proteomes throughout the early time course of Delta-24-RGD infection. In addition to the severe proteostasis impairment detected during the first hours post-infection (hpi), Delta-24-RGD induces a transient inhibition of signal transducer and activator of transcription 3 (STAT3), and transcription factor AP-1 (c-JUN) between 3 and 10hpi, increasing the nuclear factor kappa B (NF-κB) activity at 6hpi. Furthermore, Delta-24-RGD specifically modulates the activation dynamics of protein kinase C (PKC), extracellular signal–regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) pathways early in infection. At extracellular level, Delta-24-RGD triggers a time –dependent dynamic production of multitasking cytokines, and chemotactic factors, suggesting potential pleiotropic effects on the immune system reactivation. Taken together, these data help us to understand the mechanisms used by Delta-24-RGD to exploit glioma proteome organization. Further mining of this proteomic resource may enable design and engineering complementary adenoviral based-vectors to increase the specificity and potency against glioma.