López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Asymptotic and convergent expansions for solutions of third-order linear differential equations with a large parameter
    (Shanghai Normal University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    In previous papers [6–8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver’s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: y ′′′ +aΛ2y′ +bΛ3y = f(x)y′ +g(x)y, with a, b ∈ C fixed, f′ and g continuous, and Λ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver’s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral P(x, y) for large |x|.
  • PublicationOpen Access
    The Pearcey integral in the highly oscillatory region II
    (Elsevier, 2025-08-01) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    We consider the Pearcey integral P(x, y) for large values of |x| and bounded values of |y|. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of P(x, y) for large |x|, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex x−plane in two different sectors in which P(x, y) behaves differently when |x| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x and y. Both of them are of Poincaré type; one of them is given in terms of inverse powers of x; the other one in terms of inverse powers of x 1/2 , and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.