# Person: López García, José Luis

Loading...

## Email Address

## person.page.identifierURI

## Birth Date

## Research Projects

## Organizational Units

## Job Title

## Last Name

López García

## First Name

José Luis

## person.page.departamento

Estadística, Informática y Matemáticas

## person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

## ORCID

0000-0002-6050-9015

## person.page.upna

2369

## Name

26 results Back to results

### Filters

#### Author

#### Date

#### Has files

#### Item Type

### Settings

Sort By

Results per page

## Search Results

Now showing 1 - 10 of 26

Publication Open Access The asymptotic expansion of the swallowtail integral in the highly oscillatory region(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more The mathematical models of many short wavelength phenomena, specially wave propagation and optical diffraction, contain, as a basic ingredient, oscillatory integrals with several nearly coincident stationary phase or saddle points. The uniform approximation of those integrals can be expressed in terms of certain canonical integrals and their derivatives [2,16]. The importance of these canonical diffraction integrals is stressed in [14] by means of the following sentence: The role played by these canonical diffraction integrals in the analysis of caustic wave fields is analogous to that played by complex exponentials in plane wave theory. Apart from their mathematical importance in the uniform asymptotic approximation of oscillatory integrals [12], the canonical diffraction integrals have physical applications in the description of surface gravity waves [11], [17], bifurcation sets, optics, quantum mechanics, chemical physics [4] and acoustics (see [1], Section 36.14 and references there in). To our knowledge, the first application of this family of integrals traces back to the description of the disturbances on a water surface produced, for example, by a traveling ship. These disturbances form a familiar pattern of bow and stern waves which was first explained mathematically by Lord Kelvin [10] using these integrals.Show more Publication Open Access Analytic formulas for the evaluation of the Pearcey integral(American Mathematical Society, 2017) López García, José Luis; Pagola Martínez, Pedro Jesús; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more We can find in the literature several convergent and/or asymptotic expansions of the Pearcey integral P(x, y) in different regions of the complex variables x and y, but they do not cover the whole complex x and y planes. The purpose of this paper is to complete this analysis giving new convergent and/or asymptotic expansions that, together with the known ones, cover the evaluation of the Pearcey integral in a large region of the complex x and y planes. The accuracy of the approximations derived in this paper is illustrated with some numerical experiments. Moreover, the expansions derived here are simpler compared with other known expansions, as they are derived from a simple manipulation of the integral definition of P(x, y).Show more Publication Open Access An extension of the multiple Erdélyi-Kober operator and representations of the generalized hypergeometric functions(De Gruyter, 2018) Karp, D. B.; López García, José Luis; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more In this paper we investigate the extension of the multiple Erd elyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer's G function. An action of the regularized multiple Erd elyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we de ne an alternative regularization better suited for representing the Bessel type generalized hypergeometric function p1Fp. A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.Show more Publication Open Access The Pearcey integral in the highly oscillatory region(Elsevier, 2016) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more We consider the Pearcey integral P(x, y) for large values of |y| and bounded values of |x|. The integrand of the Pearcey integral oscillates wildly in this region and the asymptotic saddle point analysis is complicated. Then we consider here the modified saddle point method introduced in [Lopez, Pérez and Pagola, 2009] [4]. With this method, the analysis is simpler and it is possible to derive a complete asymptotic expansion of P(x, y) for large |y|. The asymptotic analysis requires the study of three different regions for separately. In the three regions, the expansion is given in terms of inverse powers of y2/3 and the coefficients are elementary functions of x. The accuracy of the approximation is illustrated with some numerical experiments.Show more Publication Open Access New series expansions of the 3F2 function(2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The domain of convergence is sometimes a disk, other times a half-plane, other times the region |z|2 < 4|1 − z|. The accuracy of the approximation given by these expansions is illustrated with numerical experiments.Show more Publication Open Access Orthogonal basis for the optical transfer function(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 OTF perfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.Show more Publication Open Access Asymptotic and convergent expansions for solutions of third-order linear differential equations with a large parameter(Shanghai Normal University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more In previous papers [6–8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver’s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: y ′′′ +aΛ2y′ +bΛ3y = f(x)y′ +g(x)y, with a, b ∈ C fixed, f′ and g continuous, and Λ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver’s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral P(x, y) for large |x|.Show more Publication Open Access Asymptotic behaviour of the Urbanik semigroup(Elsevier, 2015) Berg, Christian; López García, José Luis; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We revisit the product convolution semigroup of probability densities ec(t); c > 0 on the positive half-line with moments (n!)c and determine the asymptotic behaviour of ec for large and small t > 0. This shows that (n!)c is indeterminate as Stieltjes moment sequence if and only if c > 2. When c is a natural number ec is a Meijer-G function. From the results about ec we obtain the asymptotic behaviour at 1 of the convolution roots of the Gumbel distribution.Show more Publication Open Access On a particular class of Meijer's G functions appearing in fractional calculus(Academic Publications, 2018) Karp, D. B.; López García, José Luis; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasShow more In this paper we investigate the Meijer G-function G p+1,p+1 p,1 which, for certain parameter values, represents the Riemann-Liouville fractional integral of the Meijer-Nørlund function G p,p. p,0 The properties of this function play an important role in extending the multiple Erdélyi-Kober fractional integral operator to arbitrary values of the parameters which is investigated in a separate work, in Fract. Calc. Appl. Anal., Vol. 21, No 5 (2018). Our results for G p+1,p+1 p,1 include: a regularization formula for overlapping poles, a connection formula with the Meijer-Nørlund function, asymptotic formulas around the origin and unity, formulas for the moments, a hypergeometric transform and a sign stabilization theorem for growing parameters.Show more Publication Open Access Convergent expansions of the incomplete gamma functions in terms of elementary functions(World Scientific Publishing, 2017) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more We consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds.Show more

- «
- 1 (current)
- 2
- 3
- »