López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access The Pearcey integral in the highly oscillatory region II(Elsevier, 2025-08-01) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2We consider the Pearcey integral P(x, y) for large values of |x| and bounded values of |y|. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of P(x, y) for large |x|, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex x−plane in two different sectors in which P(x, y) behaves differently when |x| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x and y. Both of them are of Poincaré type; one of them is given in terms of inverse powers of x; the other one in terms of inverse powers of x 1/2 , and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.Publication Open Access The Pearcey integral in the highly oscillatory region(Elsevier, 2016) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Pearcey integral P(x, y) for large values of |y| and bounded values of |x|. The integrand of the Pearcey integral oscillates wildly in this region and the asymptotic saddle point analysis is complicated. Then we consider here the modified saddle point method introduced in [Lopez, Pérez and Pagola, 2009] [4]. With this method, the analysis is simpler and it is possible to derive a complete asymptotic expansion of P(x, y) for large |y|. The asymptotic analysis requires the study of three different regions for separately. In the three regions, the expansion is given in terms of inverse powers of y2/3 and the coefficients are elementary functions of x. The accuracy of the approximation is illustrated with some numerical experiments.Publication Open Access Asymptotic and convergent expansions for solutions of third-order linear differential equations with a large parameter(Shanghai Normal University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaIn previous papers [6–8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver’s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: y ′′′ +aΛ2y′ +bΛ3y = f(x)y′ +g(x)y, with a, b ∈ C fixed, f′ and g continuous, and Λ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver’s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral P(x, y) for large |x|.Publication Open Access Convergent and asymptotic expansions of the Pearcey integral(Elsevier, 2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Pearcey integral P(x; y) for large values of |x|, x, y ∈ C. We can find in the literature several convergent or asymptotic expansions in terms of elementary and special functions, with different levels of complexity. Most of them are based in analytic, in particular asymptotic, techniques applied to the integral definition of P(x; y). In this paper we consider a different method: the iterative technique used for differential equations in [Lopez, 2012]. Using this technique in a differential equation satisfied by P(x; y) we obtain a new convergent expansion analytically simple that is valid for any complex x and y and has an asymptotic property when |x|→ ∞ uniformly for y in bounded sets. The accuracy of the approximation is illustrated with some numerical experiments and compared with other expansions given in the literature.