Person: López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-6050-9015
person.page.upna
2369
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Convergent and asymptotic methods for second-order difference equations with a large parameter(Springer, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the second-order linear difference equation y(n+2)−2ay(n+1)−Λ2y(n)=g(n)y(n)+f(n)y(n+1) , where Λ is a large complex parameter, a≥0 and g and f are sequences of complex numbers. Two methods are proposed to find the asymptotic behavior for large |Λ|of the solutions of this equation: (i) an iterative method based on a fixed point method and (ii) a discrete version of Olver’s method for second-order linear differential equations. Both methods provide an asymptotic expansion of every solution of this equation. The expansion given by the first method is also convergent and may be applied to nonlinear problems. Bounds for the remainders are also given. We illustrate the accuracy of both methods for the modified Bessel functions and the associated Legendre functions of the first kind.Publication Open Access On a modifcation of Olver's method: a special case(Springer US, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe consider the asymptotic method designed by Olver (Asymptotics and special functions. Academic Press, New York, 1974) for linear differential equations of the second order containing a large (asymptotic) parameter : xm y −2 y = g(x)y, with m ∈ Z and g continuous. Olver studies in detail the cases m = 2, especially the cases m = 0, ±1, giving the Poincaré-type asymptotic expansions of two independent solutions of the equation. The case m = 2 is different, as the behavior of the solutions for large is not of exponential type, but of power type. In this case, Olver’s theory does not give many details. We consider here the special case m = 2. We propose two different techniques to handle the problem: (1) a modification of Olver’s method that replaces the role of the exponential approximations by power approximations, and (2) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter.