Person: López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-6050-9015
person.page.upna
2369
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access The Pearcey integral in the highly oscillatory region(Elsevier, 2016) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Pearcey integral P(x, y) for large values of |y| and bounded values of |x|. The integrand of the Pearcey integral oscillates wildly in this region and the asymptotic saddle point analysis is complicated. Then we consider here the modified saddle point method introduced in [Lopez, Pérez and Pagola, 2009] [4]. With this method, the analysis is simpler and it is possible to derive a complete asymptotic expansion of P(x, y) for large |y|. The asymptotic analysis requires the study of three different regions for separately. In the three regions, the expansion is given in terms of inverse powers of y2/3 and the coefficients are elementary functions of x. The accuracy of the approximation is illustrated with some numerical experiments.Publication Open Access Convergent expansions of the incomplete gamma functions in terms of elementary functions(World Scientific Publishing, 2017) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds.Publication Open Access Convergent expansions of the confluent hypergeometric functions in terms of elementary functions(American Mathematical Society, 2018) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confluent hypergeometric function U(a, b; z) for b ∈ C, Ra > 0, and Rz > 0. We derive two convergent expansions of M(a, b; z); one of them in terms of incomplete gamma functions γ(a, z) and another one in terms of rational functions of ez and z. We also derive a convergent expansion of U(a, b; z) in terms of incomplete gamma functions γ(a, z) and Γ(a, z). The expansions of M(a, b; z) hold uniformly in either Rz ≥ 0 or Rz ≤ 0; the expansion of U(a, b; z) holds uniformly in Rz > 0. The accuracy of the approximations is illustrated by means of some numerical experiments.Publication Open Access Analytic formulas for the evaluation of the Pearcey integral(American Mathematical Society, 2017) López García, José Luis; Pagola Martínez, Pedro Jesús; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe can find in the literature several convergent and/or asymptotic expansions of the Pearcey integral P(x, y) in different regions of the complex variables x and y, but they do not cover the whole complex x and y planes. The purpose of this paper is to complete this analysis giving new convergent and/or asymptotic expansions that, together with the known ones, cover the evaluation of the Pearcey integral in a large region of the complex x and y planes. The accuracy of the approximations derived in this paper is illustrated with some numerical experiments. Moreover, the expansions derived here are simpler compared with other known expansions, as they are derived from a simple manipulation of the integral definition of P(x, y).Publication Open Access New series expansions of the 3F2 function(2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaWe can use the power series definition of 3F2(a1, a2, a3; b1, b2; z) to compute this function for z in the unit disk only. In this paper we obtain new expansions of this function that are convergent in larger domains. Some of these expansions involve the polynomial 3F2(a1,−n, a3; b1, b2; z) evaluated at certain points z. Other expansions involve the Gauss hypergeometric function 2F1. The domain of convergence is sometimes a disk, other times a half-plane, other times the region |z|2 < 4|1 − z|. The accuracy of the approximation given by these expansions is illustrated with numerical experiments.Publication Open Access Convergent expansions of the Bessel functions in terms of elementary functions(Springer US, 2018) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Bessel functions Jν (z) and Yν (z) for ν > −1/2 and z ≥ 0. We derive a convergent expansion of Jν (z) in terms of the derivatives of (sin z)/z, and a convergent expansion of Yν (z) in terms of derivatives of (1−cos z)/z, derivatives of (1 − e−z)/z and (2ν, z). Both expansions hold uniformly in z in any fixed horizontal strip and are accompanied by error bounds. The accuracy of the approximations is illustrated with some numerical experiments.Publication Open Access Convergent and asymptotic expansions of the Pearcey integral(Elsevier, 2015) López García, José Luis; Pagola Martínez, Pedro Jesús; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the Pearcey integral P(x; y) for large values of |x|, x, y ∈ C. We can find in the literature several convergent or asymptotic expansions in terms of elementary and special functions, with different levels of complexity. Most of them are based in analytic, in particular asymptotic, techniques applied to the integral definition of P(x; y). In this paper we consider a different method: the iterative technique used for differential equations in [Lopez, 2012]. Using this technique in a differential equation satisfied by P(x; y) we obtain a new convergent expansion analytically simple that is valid for any complex x and y and has an asymptotic property when |x|→ ∞ uniformly for y in bounded sets. The accuracy of the approximation is illustrated with some numerical experiments and compared with other expansions given in the literature.