Person: López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-6050-9015
person.page.upna
2369
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access The uniform asymptotic method "saddle point near an end point" revisited(Elsevier, 2024) López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertistate PublikoaWe continue the program initiated in [López & all, 2009–2011] to simplify asymptotic methods for integrals: in this paper we revise the uniform method ‘‘saddle point near an end point’’. We obtain a more systematic version of this uniform asymptotic method where the computation of the coefficients of the asymptotic expansion is remarkably simpler than in the classical method. On the other hand, as in the standard method, the asymptotic sequence is given in terms of parabolic cylinder functions. New asymptotic expansions of the confluent hypergeometric functions 𝑀(𝑐, 𝑥∕𝛼 + 𝑐 + 1, 𝑥) and 𝑈(𝑐, 𝛼𝑥 + 𝑐 + 1, 𝑥) for large 𝑥, 𝑐 fixed, uniformly valid for 𝛼 ∈ (0, ∞), are given as an illustration.Publication Open Access Uniform convergent expansions of integral transforms(American Mathematical Society, 2021) López García, José Luis; Palacios Herrero, Pablo; Pagola Martínez, Pedro Jesús; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSeveral convergent expansions are available for most of the special functions of the mathematical physics, as well as some asymptotic expansions [NIST Handbook of Mathematical Functions, 2010]. Usually, both type of expansions are given in terms of elementary functions; the convergent expansions provide a good approximation for small values of a certain variable, whereas the asymptotic expansions provide a good approximation for large values of that variable. Also, quite often, those expansions are not uniform: the convergent expansions fail for large values of the variable and the asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-2019] we have designed new expansions of certain special functions, given in terms of elementary functions, that are uniform in certain variables, providing good approximations of those special functions in large regions of the variables, in particular for large and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is based on a suitable integral representation of the special function. In this paper we face the problem of designing a general theory of uniform approximations of special functions based on their integral representations. Then, we consider the following integral transform of a function g(t) with kernel h(t, z), F(z) := 1 0 h(t, z)g(t)dt. We require for the function h(t, z) to be uniformly bounded for z ∈D⊂ C by a function H(t) integrable in t ∈ [0, 1], and for the function g(t) to be analytic in an open region Ω that contains the open interval (0, 1). Then, we derive expansions of F(z) in terms of the moments of the function h, M[h(·, z), n] := 1 0 h(t, z)tndt, that are uniformly convergent for z ∈ D. The convergence of the expansion is of exponential order O(a−n), a > 1, when [0, 1] ∈ Ω and of power order O(n−b), b > 0, when [0, 1] ∈/ Ω. Most of the special functions F(z) having an integral representation may be cast in this form, possibly after an appropriate change of the integration variable. Then, special interest has the case when the moments M[h(·, z), n] are elementary functions of z, because in that case the uniformly convergent expansion derived for F(z) is given in terms of elementary functions. We illustrate the theory with several examples of special functions different from those considered in [Bujanda & all, 2018-2019].Publication Open Access An analytic representation of the second symmetric standard elliptic integral in terms of elementary functions(Springer, 2022) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe derive new convergent expansions of the symmetric standard elliptic integral RD(x,y,z), for x,y,z∈C∖(−∞,0], in terms of elementary functions. The expansions hold uniformly for large and small values of one of the three variables x, y or z (with the other two fixed). We proceed by considering a more general parametric integral from which RD(x,y,z) is a particular case. It turns out that this parametric integral is an integral representation of the Appell function F1(a;b,c;a+1;x,y). Therefore, as a byproduct, we deduce convergent expansions of F1(a;b,c;a+1;x,y). We also compute error bounds at any order of the approximation. Some numerical examples show the accuracy of the expansions and their uniform features.Publication Open Access Uniform approximations of the first symmetric elliptic integral in terms of elementary functions(Springer, 2022) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako GobernuaWe consider the standard symmetric elliptic integral RF(x, y, z) for complex x, y, z. We derive convergent expansions of RF(x, y, z) in terms of elementary functions that hold uniformly for one of the three variables x, y or z in closed subsets (possibly unbounded) of C\ (−∞, 0]. The expansions are accompanied by error bounds. The accuracy of the expansions and their uniform features are illustrated by means of some numerical examples.