# Person: López García, José Luis

Loading...

## Email Address

## person.page.identifierURI

## Birth Date

## Research Projects

## Organizational Units

## Job Title

## Last Name

López García

## First Name

José Luis

## person.page.departamento

Estadística, Informática y Matemáticas

## person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

## ORCID

0000-0002-6050-9015

## person.page.upna

2369

## Name

12 results Back to results

### Filters

#### Author

#### Date

#### Has files

#### Item Type

### Settings

Sort By

Results per page

## Search Results

Now showing 1 - 10 of 12

Publication Open Access Orthogonal basis with a conicoid first mode for shape specification of optical surfaces(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Navarro, Rafael; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.Show more Publication Open Access Uniform convergent expansions of the Gauss hypergeometric function in terms of elementary functions(Taylor & Francis, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e InformáticaShow more We consider the hypergeometric function 2F1(a, b; c; z) for z ∈ C \ [1,∞). For Ra ≥ 0, we derive a convergent expansion of 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞). When a ∈ N, the expansion also contains a logarithmic term of the form log(1 − z). For Ra ≤ 0, we derive a convergent expansion of (1 − z)a 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞) in the exterior of the circle |z − 1| = r for arbitrary r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of the approximation.Show more Publication Open Access Convergent and asymptotic expansions of solutions of differential equations with a large parameter: Olver cases II and III(Rocky Mountain Mathematics Consortium, 2015) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more This paper continues the investigation initiated in [Lopez, 2013]. We consider the asymptotic method designed by F. Olver [Olver, 1974] for linear differential equations of the second order containing a large (asymptotic) parameter . We consider here the second and third cases studied by Olver: differential equations with a turning point (second case) or a singular point (third case). It is well-known that his method gives the Poincar´e-type asymptotic expansion of two independent solutions of the equation in inverse powers of . In this paper we add initial conditions to the differential equation and consider the corresponding initial value problem. By using the Green function of an auxiliary problem, we transform the initial value problem into a Volterra integral equation of the second kind. Then, using a fixed point theorem, we construct a sequence of functions that converges to the unique solution of the problem. This sequence has also the property of being an asymptotic expansion for large (not of Poincar´e-type) of the solution of the problem. Moreover, we showShow more Publication Open Access Convergent and asymptotic methods for second-order difference equations with a large parameter(Springer, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more We consider the second-order linear difference equation y(n+2)−2ay(n+1)−Λ2y(n)=g(n)y(n)+f(n)y(n+1) , where Λ is a large complex parameter, a≥0 and g and f are sequences of complex numbers. Two methods are proposed to find the asymptotic behavior for large |Λ|of the solutions of this equation: (i) an iterative method based on a fixed point method and (ii) a discrete version of Olver’s method for second-order linear differential equations. Both methods provide an asymptotic expansion of every solution of this equation. The expansion given by the first method is also convergent and may be applied to nonlinear problems. Bounds for the remainders are also given. We illustrate the accuracy of both methods for the modified Bessel functions and the associated Legendre functions of the first kind.Show more Publication Open Access On a modifcation of Olver's method: a special case(Springer US, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We consider the asymptotic method designed by Olver (Asymptotics and special functions. Academic Press, New York, 1974) for linear differential equations of the second order containing a large (asymptotic) parameter : xm y −2 y = g(x)y, with m ∈ Z and g continuous. Olver studies in detail the cases m = 2, especially the cases m = 0, ±1, giving the Poincaré-type asymptotic expansions of two independent solutions of the equation. The case m = 2 is different, as the behavior of the solutions for large is not of exponential type, but of power type. In this case, Olver’s theory does not give many details. We consider here the special case m = 2. We propose two different techniques to handle the problem: (1) a modification of Olver’s method that replaces the role of the exponential approximations by power approximations, and (2) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter.Show more Publication Open Access Orthogonal basis for the optical transfer function(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 OTF perfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.Show more Publication Open Access The use of two-point Taylor expansions in singular one-dimensional boundary value problems I(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e InformáticaShow more We consider the second-order linear differential equation (x + 1)y′′ + f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet-Neumann). The functions f(x), g(x) and h(x) are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the end point of the interval x = −1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they exist.Show more Publication Open Access Orthogonal basis with a conicoid first mode for shape specification of optical surfaces: reply(Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more We present some comments to the paper 'Orthogonal basis with a conicoid first mode for shape specification of optical surfaces: comment'.Show more Publication Open Access The asymptotic expansion of the swallowtail integral in the highly oscillatory region(Elsevier, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaShow more The mathematical models of many short wavelength phenomena, specially wave propagation and optical diffraction, contain, as a basic ingredient, oscillatory integrals with several nearly coincident stationary phase or saddle points. The uniform approximation of those integrals can be expressed in terms of certain canonical integrals and their derivatives [2,16]. The importance of these canonical diffraction integrals is stressed in [14] by means of the following sentence: The role played by these canonical diffraction integrals in the analysis of caustic wave fields is analogous to that played by complex exponentials in plane wave theory. Apart from their mathematical importance in the uniform asymptotic approximation of oscillatory integrals [12], the canonical diffraction integrals have physical applications in the description of surface gravity waves [11], [17], bifurcation sets, optics, quantum mechanics, chemical physics [4] and acoustics (see [1], Section 36.14 and references there in). To our knowledge, the first application of this family of integrals traces back to the description of the disturbances on a water surface produced, for example, by a traveling ship. These disturbances form a familiar pattern of bow and stern waves which was first explained mathematically by Lord Kelvin [10] using these integrals.Show more Publication Open Access Asymptotic and convergent expansions for solutions of third-order linear differential equations with a large parameter(Shanghai Normal University, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaShow more In previous papers [6–8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver’s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: y ′′′ +aΛ2y′ +bΛ3y = f(x)y′ +g(x)y, with a, b ∈ C fixed, f′ and g continuous, and Λ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver’s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral P(x, y) for large |x|.Show more