Person:
López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-6050-9015

person.page.upna

2369

Name

Search Results

Now showing 1 - 8 of 8
  • PublicationOpen Access
    New recurrence relations for several classical families of polynomials
    (Taylor and Francis, 2021) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials.
  • PublicationOpen Access
    Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions
    (University of Szeged (Hungría), 2020) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    We consider the second-order linear differential equation (x2 − 1)y'' + f (x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f, g and h are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the two end points of the interval may be regular singular points of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor appro-ximation of the analytic solutions when they exist.
  • PublicationOpen Access
    Uniform convergent expansions of the error function in terms of elementary functions
    (Springer, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We derive a new analytic representation of the error function erfz in the form of a convergent series whose terms are exponential and rational functions. The expansion holds uniformly in z in the double sector | arg (±z) | <π/4. The expansion is accompanied by realistic error bounds.
  • PublicationOpen Access
    A convergent version of Watson’s lemma for double integrals
    (Taylor & Francis, 2022) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A modification of Watson’s lemma for Laplace transforms ∞ 0 f(t) e−zt dt was introduced in [Nielsen, 1906], deriving a new asymptotic expansion for large |z| with the extra property of being convergent as well. Inspired in that idea, in this paper we derive asymptotic expansions of two-dimensional Laplace transforms F(x, y) := ∞ 0 ∞ 0 f(t,s) e−xt−ys dt ds for large |x| and |y| that are also convergent. The expansions of F(x, y) are accompanied by error bounds. Asymptotic and convergent expansions of some specialfunctions are given as illustration.
  • PublicationOpen Access
    The swallowtail integral in the highly oscillatory region III
    (Taylor & Francis, 2021) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the swallowtail integral Ψ(x,y,z):=∫∞−∞ei(t5+xt3+yt2+zt)dt for large values of |z| and bounded values of |x| and |y|. The integrand of the swallowtail integral oscillates wildly in this region and the asymptotic analysis is subtle. The standard saddle point method is complicated and then we use the modified saddle point method introduced in López et al., A systematization of the saddle point method application to the Airy and Hankel functions. J Math Anal Appl. 2009;354:347–359. The analysis is more straightforward with this method and it is possible to derive complete asymptotic expansions of Ψ(x,y,z) for large |z| and fixed x and y. The asymptotic analysis requires the study of three different regions for argz separated by three Stokes lines in the sector −π
  • PublicationOpen Access
    Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals
    (Wiley, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the highly oscillatory integral 𝐹(𝑤) ∶= ∫ ∞ −∞ 𝑒𝑖𝑤(𝑡𝐾+2+𝑒𝑖𝜃𝑡𝑝) 𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤, −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤ 𝐾, and 𝑔(𝑡) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms of elementary functions, and determine the Stokes lines. For 𝑝 ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters 𝐾 and 𝑝; the special case 𝑝=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2,…,𝑥𝐾) for large values of one of its variables, say 𝑥𝑝, and bounded values of the remaining ones. This family of integrals may be written in the form 𝐹(𝑤) for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |𝑥𝑝|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.
  • PublicationOpen Access
    The swallowtail integral in the highly oscillatory region II
    (Kent State University, 2020) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We analyze the asymptotic behavior of the swallowtail integral R ∞ −∞ e i(t 5+xt3+yt2+zt)dt for large values of |y| and bounded values of |x| and |z|. We use the simpli ed saddle point method introduced in [López et al., 2009]. With this method, the analysis is more straightforward than with the standard saddle point method and it is possible to derive complete asymptotic expansions of the integral for large |y| and xed x and z. There are four Stokes lines in the sector (−π, π] that divide the complex y−plane in four sectors in which the swallowtail integral behaves di erently when |y| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x, y and z. One of them is of Poincaré type and is given in terms of inverse powers of y 1/2 . The other one is given in terms of an asymptotic sequence of the order O(y −n/9 ) when |y| → ∞, and it is multiplied by an exponential factor that behaves di erently in the four mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.
  • PublicationOpen Access
    An asymptotic expansion of the hyberbolic umbilic catastrophe integral
    (Springer, 2022) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We obtain an asymptotic expansion of the hyperbolic umbilic catastrophe integral Ψ(H) (x,y,z) := ∫∞−∞∫∞−∞exp(i(s3+t3+zst +yt+xs))ds dt for large values of |x| and bounded values of |y| and |z|. The expansion is given in terms of Airy functions and inverse powers of x. There is only one Stokes ray at argx=π . We use the modified saddle point method introduced in (López et al. J Math Anal Appl 354(1):347–359, 2009). The accuracy and the asymptotic character of the approximations are illustrated with numerical experiments.