Person:
López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-6050-9015

person.page.upna

2369

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Uniform approximations of the first symmetric elliptic integral in terms of elementary functions
    (Springer, 2022) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    We consider the standard symmetric elliptic integral RF(x, y, z) for complex x, y, z. We derive convergent expansions of RF(x, y, z) in terms of elementary functions that hold uniformly for one of the three variables x, y or z in closed subsets (possibly unbounded) of C\ (−∞, 0]. The expansions are accompanied by error bounds. The accuracy of the expansions and their uniform features are illustrated by means of some numerical examples.
  • PublicationOpen Access
    An analytic representation of the second symmetric standard elliptic integral in terms of elementary functions
    (Springer, 2022) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We derive new convergent expansions of the symmetric standard elliptic integral RD(x,y,z), for x,y,z∈C∖(−∞,0], in terms of elementary functions. The expansions hold uniformly for large and small values of one of the three variables x, y or z (with the other two fixed). We proceed by considering a more general parametric integral from which RD(x,y,z) is a particular case. It turns out that this parametric integral is an integral representation of the Appell function F1(a;b,c;a+1;x,y). Therefore, as a byproduct, we deduce convergent expansions of F1(a;b,c;a+1;x,y). We also compute error bounds at any order of the approximation. Some numerical examples show the accuracy of the expansions and their uniform features.