Person:
López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-6050-9015

person.page.upna

2369

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Uniform convergent expansions of integral transforms
    (American Mathematical Society, 2021) López García, José Luis; Palacios Herrero, Pablo; Pagola Martínez, Pedro Jesús; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Several convergent expansions are available for most of the special functions of the mathematical physics, as well as some asymptotic expansions [NIST Handbook of Mathematical Functions, 2010]. Usually, both type of expansions are given in terms of elementary functions; the convergent expansions provide a good approximation for small values of a certain variable, whereas the asymptotic expansions provide a good approximation for large values of that variable. Also, quite often, those expansions are not uniform: the convergent expansions fail for large values of the variable and the asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-2019] we have designed new expansions of certain special functions, given in terms of elementary functions, that are uniform in certain variables, providing good approximations of those special functions in large regions of the variables, in particular for large and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is based on a suitable integral representation of the special function. In this paper we face the problem of designing a general theory of uniform approximations of special functions based on their integral representations. Then, we consider the following integral transform of a function g(t) with kernel h(t, z), F(z) := 1 0 h(t, z)g(t)dt. We require for the function h(t, z) to be uniformly bounded for z ∈D⊂ C by a function H(t) integrable in t ∈ [0, 1], and for the function g(t) to be analytic in an open region Ω that contains the open interval (0, 1). Then, we derive expansions of F(z) in terms of the moments of the function h, M[h(·, z), n] := 1 0 h(t, z)tndt, that are uniformly convergent for z ∈ D. The convergence of the expansion is of exponential order O(a−n), a > 1, when [0, 1] ∈ Ω and of power order O(n−b), b > 0, when [0, 1] ∈/ Ω. Most of the special functions F(z) having an integral representation may be cast in this form, possibly after an appropriate change of the integration variable. Then, special interest has the case when the moments M[h(·, z), n] are elementary functions of z, because in that case the uniformly convergent expansion derived for F(z) is given in terms of elementary functions. We illustrate the theory with several examples of special functions different from those considered in [Bujanda & all, 2018-2019].
  • PublicationOpen Access
    A convergent and asymptotic Laplace method for integrals
    (Elsevier, 2023) López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Watson’s lemma and Laplace’s method provide asymptotic expansions of Laplace integrals F (z) := ∫ ∞ 0 e −zf (t) g(t)dt for large values of the parameter z. They are useful tools in the asymptotic approximation of special functions that have a Laplace integral representation. But in most of the important examples of special functions, the asymptotic expansion derived by means of Watson’s lemma or Laplace’s method is not convergent. A modification of Watson’s lemma was introduced in [Nielsen, 1906] where, by the use of inverse factorial series, a new asymptotic as well as convergent expansion of F (z), for the particular case f (t) = t, was derived. In this paper we go some steps further and investigate a modification of the Laplace’s method for F (z), with a general phase function f (t), to derive asymptotic expansions of F (z) that are also convergent, accompanied by error bounds. An analysis of the remainder of this new expansion shows that it is convergent under a mild condition for the functions f (t) and g(t), namely, these functions must be analytic in certain starlike complex regions that contain the positive axis [0,∞). In many practical situations (in many examples of special functions), the singularities of f (t) and g(t) are off this region and then this method provides asymptotic expansions that are also convergent. We illustrate this modification of the Laplace’s method with the parabolic cylinder function U(a, z), providing an asymptotic expansions of this function for large z that is also convergent.