Person:
López García, José Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López García

First Name

José Luis

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-6050-9015

person.page.upna

2369

Name

Search Results

Now showing 1 - 10 of 26
  • PublicationOpen Access
    Orthogonal basis with a conicoid first mode for shape specification of optical surfaces
    (Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Navarro, Rafael; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.
  • PublicationOpen Access
    An extension of the multiple Erdélyi-Kober operator and representations of the generalized hypergeometric functions
    (De Gruyter, 2018) Karp, D. B.; López García, José Luis; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this paper we investigate the extension of the multiple Erd elyi-Kober fractional integral operator of Kiryakova to arbitrary complex values of parameters by the way of regularization. The regularization involves derivatives of the function in question and the integration with respect to a kernel expressed in terms of special case of Meijer's G function. An action of the regularized multiple Erd elyi-Kober operator on some simple kernels leads to decomposition formulas for the generalized hypergeometric functions. In the ultimate section, we de ne an alternative regularization better suited for representing the Bessel type generalized hypergeometric function p􀀀1Fp. A particular case of this regularization is then used to identify some new facts about the positivity and reality of zeros of this function.
  • PublicationOpen Access
    The Pearcey integral in the highly oscillatory region
    (Elsevier, 2016) López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the Pearcey integral P(x, y) for large values of |y| and bounded values of |x|. The integrand of the Pearcey integral oscillates wildly in this region and the asymptotic saddle point analysis is complicated. Then we consider here the modified saddle point method introduced in [Lopez, Pérez and Pagola, 2009] [4]. With this method, the analysis is simpler and it is possible to derive a complete asymptotic expansion of P(x, y) for large |y|. The asymptotic analysis requires the study of three different regions for separately. In the three regions, the expansion is given in terms of inverse powers of y2/3 and the coefficients are elementary functions of x. The accuracy of the approximation is illustrated with some numerical experiments.
  • PublicationOpen Access
    On a modifcation of Olver's method: a special case
    (Springer US, 2016) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We consider the asymptotic method designed by Olver (Asymptotics and special functions. Academic Press, New York, 1974) for linear differential equations of the second order containing a large (asymptotic) parameter : xm y −2 y = g(x)y, with m ∈ Z and g continuous. Olver studies in detail the cases m = 2, especially the cases m = 0, ±1, giving the Poincaré-type asymptotic expansions of two independent solutions of the equation. The case m = 2 is different, as the behavior of the solutions for large is not of exponential type, but of power type. In this case, Olver’s theory does not give many details. We consider here the special case m = 2. We propose two different techniques to handle the problem: (1) a modification of Olver’s method that replaces the role of the exponential approximations by power approximations, and (2) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter.
  • PublicationOpen Access
    Orthogonal basis for the optical transfer function
    (Optical Society of America, 2016) Ferreira González, Chelo; López García, José Luis; Navarro, Rafael; Pérez Sinusía, Ester; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    We propose systems of orthogonal functions qn to represent optical transfer functions (OTF) characterized by including the diffraction-limited OTF as the first basis function q0 OTF perfect. To this end, we apply a powerful and rigorous theoretical framework based on applying the appropriate change of variables to well-known orthogonal systems. Here we depart from Legendre polynomials for the particular case of rotationally symmetric OTF and from spherical harmonics for the general case. Numerical experiments with different examples show that the number of terms necessary to obtain an accurate linear expansion of the OTF mainly depends on the image quality. In the rotationally symmetric case we obtained a reasonable accuracy with approximately 10 basis functions, but in general, for cases of poor image quality, the number of basis functions may increase and hence affect the efficiency of the method. Other potential applications, such as new image quality metrics are also discussed.
  • PublicationOpen Access
    A simplification of the stationary phase method: application to the Anger and Weber functions
    (Kent State University, 2017) López García, José Luis; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The main difficulty in the practical use of the stationary phase method in asymptotic expansions of integrals is originated by a change of variables. The coefficients of the asymptotic expansion are the coefficients of the Taylor expansion of a certain function implicitly defined by that change of variables. In general, this function is not explicitly known, and then the computation of those coefficients is cumbersome. Using the factorization of the exponential factor used in previous works of [Tricomi, 1950], [Erdélyi and Wyman, 1963], and [Dingle, 1973], we obtain a variant of the method that avoids that change of variables and simplifies the computations. On the one hand, the calculation of the coefficients of the asymptotic expansion is remarkably simpler and explicit. On the other hand, the asymptotic sequence is as simple as in the standard stationary phase method: inverse powers of the asymptotic variable. New asymptotic expansions of the Anger and Weber functions Jλx(x) and Eλx(x) for large positive x and real parameter λ 6= 0 are given as an illustration.
  • PublicationOpen Access
    Convergent and asymptotic methods for second-order difference equations with a large parameter
    (Springer, 2018) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the second-order linear difference equation y(n+2)−2ay(n+1)−Λ2y(n)=g(n)y(n)+f(n)y(n+1) , where Λ is a large complex parameter, a≥0 and g and f are sequences of complex numbers. Two methods are proposed to find the asymptotic behavior for large |Λ|of the solutions of this equation: (i) an iterative method based on a fixed point method and (ii) a discrete version of Olver’s method for second-order linear differential equations. Both methods provide an asymptotic expansion of every solution of this equation. The expansion given by the first method is also convergent and may be applied to nonlinear problems. Bounds for the remainders are also given. We illustrate the accuracy of both methods for the modified Bessel functions and the associated Legendre functions of the first kind.
  • PublicationOpen Access
    On a particular class of Meijer's G functions appearing in fractional calculus
    (Academic Publications, 2018) Karp, D. B.; López García, José Luis; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    In this paper we investigate the Meijer G-function G p+1,p+1 p,1 which, for certain parameter values, represents the Riemann-Liouville fractional integral of the Meijer-Nørlund function G p,p. p,0 The properties of this function play an important role in extending the multiple Erdélyi-Kober fractional integral operator to arbitrary values of the parameters which is investigated in a separate work, in Fract. Calc. Appl. Anal., Vol. 21, No 5 (2018). Our results for G p+1,p+1 p,1 include: a regularization formula for overlapping poles, a connection formula with the Meijer-Nørlund function, asymptotic formulas around the origin and unity, formulas for the moments, a hypergeometric transform and a sign stabilization theorem for growing parameters.
  • PublicationOpen Access
    Convergent expansions of the incomplete gamma functions in terms of elementary functions
    (World Scientific Publishing, 2017) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Matematika eta Informatika Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Matemática e Informática; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds.
  • PublicationOpen Access
    Convergent expansions of the confluent hypergeometric functions in terms of elementary functions
    (American Mathematical Society, 2018) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confluent hypergeometric function U(a, b; z) for b ∈ C, Ra > 0, and Rz > 0. We derive two convergent expansions of M(a, b; z); one of them in terms of incomplete gamma functions γ(a, z) and another one in terms of rational functions of ez and z. We also derive a convergent expansion of U(a, b; z) in terms of incomplete gamma functions γ(a, z) and Γ(a, z). The expansions of M(a, b; z) hold uniformly in either Rz ≥ 0 or Rz ≤ 0; the expansion of U(a, b; z) holds uniformly in Rz > 0. The accuracy of the approximations is illustrated by means of some numerical experiments.