Person:
Pascual Miqueleiz, Julio María

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pascual Miqueleiz

First Name

Julio María

person.page.departamento

Ingeniería Eléctrica y Electrónica

ORCID

0000-0002-9495-5910

person.page.upna

810225

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    An energy management system design using fuzzy logic control: smoothing the grid power profile of a residential electro-thermal microgrid
    (IEEE, 2021) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; García Gutiérrez, Gabriel; Gordillo, Rodolfo; Llanos, Jacqueline; Sanchis Gúrpide, Pablo; Motoasca, Emilia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This work deals with the design of a Fuzzy Logic Control (FLC) based Energy Management System (EMS) for smoothing the grid power prole of a grid-connected electro-thermal microgrid. The case study aims to design an Energy Management System (EMS) to reduce the impact on the grid power when renewable energy sources are incorporated to pre-existing grid-connected household appliances. The scenario considers a residential microgrid comprising photovoltaic and wind generators, at-plate collectors, electric and thermal loads and electrical and thermal energy storage systems and assumes that neither renewable generation nor the electrical and thermal load demands are controllable. The EMS is built through two low-complexity FLC blocks of only 25 rules each. The first one is in charge of smoothing the power prfile exchanged with the grid, whereas the second FLC block drives the power of the Electrical Water Heater (EWH). The EMS uses the forecast of the electrical and thermal power balance between generation and consumption to predict the microgrid behavior, for each 15-minute interval, over the next 12 hours. Simulations results, using real one-year measured data show that the proposed EMS design achieves 11.4% reduction of the maximum power absorbed from the grid and an outstanding reduction of the grid power profile ramp-rates when compared with other state-of-the-art studies.
  • PublicationOpen Access
    Fuzzy-based power exchange management between grid-tied interconnected residential microgrids
    (IEEE, 2020) Arcos Avilés, Diego; García Gutiérrez, Gabriel; Guinjoan Gispert, Francesc; Ayala, Paúl; Ibarra, Alexander; Motoasca, Emilia; Llanos, Jacqueline; Pascual Miqueleiz, Julio María; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a fuzzy-based power exchange management between two neighboring residential grid-connected microgrids comprising both photovoltaic generation and battery energy storage system (BESS). The proposed power exchange management accounts for the magnitude of the energy rate-of-change of each microgrid and the charge difference between the BESSs of both microgrids to charge the ESS that has an energy deficit. As such, the proposed power exchange management can reduce the amount of power absorbed from the mains of each microgrid by operating jointly with each other rather than separately, and it also synchronizes the ESS of both microgrids, improving the behavior of ESSs. A comparison of the simulated results for a scenario with and without power exchange is presented in order to demonstrate the adequate behavior of the proposed power exchange management.
  • PublicationOpen Access
    Adjustment of the fuzzy logic controller parameters of the energy management strategy of a grid-tied domestic electro-thermal microgrid using the Cuckoo search algorithm
    (IEEE, 2019) Arcos Avilés, Diego; García Gutiérrez, Gabriel; Guinjoan Gispert, Francesc; Pascual Miqueleiz, Julio María; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    During the last century, population growth, together with economic development, has considerably increased the energy demand and, although renewable energies are becoming an alternative, still total energy supply is mainly non-renewable, causing well-known negative effects such as pollution and global warming. On the other hand, technological advances have allowed the development of increasingly efficient distributed generation systems and the emergence of microgrids, whose studies have been focused on architecture, elements, and objectives of the associated energy management strategies. In this regard, energy management strategies based on a Fuzzy Logic controller have been developed for electro-thermal microgrids where parameter optimization has been carried out through heuristic procedures of trial and error with acceptable results but involving a high computational cost. To solve the aforementioned drawbacks, in the present work the use of Cuckoo Search optimization nature-inspired algorithm that allows the adjustment of Fuzzy Logic controller parameters and ensures a higher quality of energy management is proposed. Obtained results show encouraging outcomes for the use of these meta-heuristic optimization algorithms.