Person: Ortiz Nicolás, Amalia
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ortiz Nicolás
First Name
Amalia
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-6446-6024
person.page.upna
8910
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access A multi-object grasp technique for placement of objects in virtual reality(MDPI, 2022) Fernández Ortega, Unai Javier; Elizondo Martínez, Sonia; Iriarte Cárdenas, Naroa; Morales, Rafael; Ortiz Nicolás, Amalia; Marichal Baráibar, Sebastián Roberto; Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSome daily tasks involve grasping multiple objects in one hand and releasing them in a determined order, for example laying out a surgical table or distributing items on shelves. For training these tasks in Virtual Reality (VR), there is no technique for allowing users to grasp multiple objects in one hand in a realistic way, and it is not known if such a technique would benefit user experience. Here, we design a multi-object grasp technique that enables users to grasp multiple objects in one hand and release them in a controlled way. We tested an object placement task under three conditions: real life, VR with single-object grasp and VR with multi-object grasp. Task completion time, distance travelled by the hands and subjective experience were measured in three scenarios: sitting in front of a desktop table, standing up in front of shelves and a room-size scenario where walking was required. Results show that the performance in a real environment is better than in Virtual Reality, both for single-object and multi-object grasping. The single-object technique performs better than the multi-object, except for the room scenario, where multi-object leads to less distance travelled and reported physical demand. For use cases where the distances are small (i.e., desktop scenario), single-object grasp is simpler and easier to understand. For larger scenarios, the multi-object grasp technique represents a good option that can be considered by other application designers.Publication Open Access Hand-as-a-prop: using the hand as a haptic proxy for manipulation in virtual reality(Springer, 2023) Marichal Baráibar, Sebastián Roberto; Ezcurdia Aguirre, Íñigo Fermín; Morales González, Rafael; Ortiz Nicolás, Amalia; Marzo Pérez, Asier; Ardaiz Villanueva, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHaptic feedback can be almost as important as visual information in virtual reality environments. On the one hand, in Active Haptic Feedback, specialized devices such as vibrotactile gloves are employed; however, these solutions can be expensive, vendor-specific or cumbersome to setup. On the other hand, Passive Haptic Feedback approaches use inexpensive objects as proxies for the virtual entities; but mapping virtual objects to real props is not scalable nor flexible. We propose the Hand-as-a-Prop technique, which consists in using human hands as object props. We implemented two modalities: Self, where the user¿s non-dominant hand act as the virtual object while the dominant hand grabs, translates and releases it; and External, where the hand of another person is used. Hand-as-a-Prop can represent multiple shapes with a single prop and does not require extra hardware. We performed an evaluation comparing both Self and External Hand-as-a-Prop with traditional Object Props in terms of user experience (goodness, ease, realism, fatigue, and preference) and performance (task completion time and translation time). Results showed that Hand-as-a-Prop was rated as neutral tending to positive, and in some cases, the performance was similar to Object Props. Users preferred Self Hand-as-a-Prop over External Hand-as-a-Prop and also obtained better results.Publication Open Access An interdisciplinary design of an interactive cultural heritage visit for in-situ, mixed reality and affective experiences(MDPI, 2022) Olaz Moratinos, Xabier; García Marreros, Ricardo M.; Ortiz Nicolás, Amalia; Marichalar Baraibar, Sebastian Roberto; Villadangos Alonso, Jesús; Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaInteractive technologies, such as mixed-reality and natural interactions with avatars, can enhance cultural heritage and the experience of visiting a museum. In this paper, we present the design rationale of an interactive experience for a cultural heritage place in the church of Roncesvalles at the beginning of Camino de Santiago. We followed a participatory design with a multidisciplinary team which resulted in the design of a spatial augmented reality system that employs 3D projection mapping and a conversational agent acting as the storyteller. Multiple features were identified as desirable for an interactive experience: interdisciplinary design team; in-situ; mixed reality; interactive digital storytelling; avatar; tangible objects; gestures; emotions and groups. The findings from a workshop are presented for guiding other interactive cultural heritage experiences. © 2022 by the authors.Publication Open Access Contactless electrostatic piloerection for haptic sensations(IEEE, 2023) Iriarte Cárdenas, Naroa; Ezcurdia Aguirre, Íñigo Fermín; Elizondo Martínez, Sonia; Irisarri Erviti, Josu; Hemmerling, Daria; Ortiz Nicolás, Amalia; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this project, we create artificial piloerection using contactless electrostatics to induce tactile sensations in a contactless way. Firstly, we design various high-voltage generators and evaluate them in terms of their static charge, safety and frequency response with different electrodes as well as grounding strategies. Secondly, a psychophysics user study revealed which parts of the upper body are more sensitive to electrostatic piloerection and what adjectives are associated with them. Finally, we combine an electrostatic generator to produce artificial piloerection on the nape with a head-mounted display, this device provides an augmented virtual experience related to fear. We hope that work encourages designers to explore contactless piloerection for enhancing experiences such as music, short movies, video games, or exhibitions.Publication Open Access Women, Science and Technology Chair—Promoting women’s careers in stem fields(IEEE, 2023) Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Ortiz Nicolás, Amalia; San Martín Biurrun, Idoia; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Chair of Women, Science and Technology of the Universidad Pública de Navarra (UPNA) aims to increase the participation of women in the fields of science and technology. Scientific culture and dissemination are the main focus of the different actions of the Chair. These activities include: the theatrical performance "Yo quiero ser científica", experimental workshops and conferences and exhibitions for all audiences and ages. More than 6.000 people have seen the play, more than 1.500 secondary school students have participated in the workshops and the audiovisual material has received more than 20.000 visits.Publication Open Access Design of an immersive virtual reality framework to enhance the sense of agency using affective computing technologies(MDPI, 2023) Ortiz Nicolás, Amalia; Elizondo Martínez, Sonia; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaVirtual Reality is expanding its use to several fields of application, including health and education. The continuous growth of this technology comes with new challenges related to the ways in which users feel inside these virtual environments. There are various guidelines on ways to enhance users’ virtual experience in terms of immersion or presence. Nonetheless, there is no extensive research on enhancing the sense of agency (SoA), a phenomenon which refers to the self-awareness of initiating, executing, and controlling one’s actions in the world. After reviewing the state of the art of technologies developed in the field of Affective Computing (AC), we propose a framework for designing immersive virtual environments (IVE) to enhance the users’ SoA. The framework defines the flow of interaction between users and the virtual world, as well as the AC technologies required for each interactive component to recognise, interpret and respond coherently within the IVE in order to enhance the SoA.Publication Open Access LevPet: a magnetic levitating spherical pet with affective reactions(ACM, 2022) Sorbet Molina, Josune; Elizondo Martínez, Sonia; Iriarte Cárdenas, Naroa; Ortiz Nicolás, Amalia; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLevPet combines affective computing and magnetic levitation to create an artificial levitating pet with affective responses and novel ways of moving to express emotions. Our interactive pet can recognise the user's emotional status using computer vision, and respond to it with a low-level empathy system based on mirroring behaviour. For example, if you approach it with a happy face, the pet will greet you and move in a nimble way. A repulsive magnetic levitator is attached to a mechanical stage controlled by a computer system. On top of it, there is the pet playground, where a house, a ping-pong ball,a xylophone and other accessories are placed. Two cameras allow to capture the user's face and the objects placed on the playground, so that the pet can interact with them. LevPet is an exploration of how to communicate internal state with only a levitating sphere; it is a platform for experimentation and an interactive demo that brings together an outer-worldly levitating metallic sphere with familiar things like emotions and a playground made of traditional items.