Campo-Bescós, Miguel

No Profile Picture Available

Email Address

Birth Date

Job Title

Last Name

Campo-Bescós

First Name

Miguel

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationUnknown
    Introducing QAnnAGNPS - A QGIS plugin to facilitate the use of AnnAGNPS (Annualized Agricultural Nonpoint source model)
    (Elsevier, 2024-03-01) Barberena Ruiz, Íñigo; Campo-Bescós, Miguel; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    AnnAGNPS is a watershed-scale hydrological model designed to analyze the impact of nonpoint source pollution in agricultural environments. Its unique capabilities have defined it as an essential model that is used globally to evaluate agricultural management scenarios. However, it does not currently have a user-friendly graphical interface that provides a simple way for users to perform simulations. This article presents QAnnAGNPS, a plugin developed in QGIS to facilitate access to the simulation capabilities of AnnAGNPS through a user-friendly interface and the addition of extra features, including data visualization. QAnnAGNPS, in addition to fulfilling this valuable task, opens the door to the incorporation of additional functions already included in other similar hydrological models. The plugin has been tested in the Latxaga cereal basin in Navarra, Spain, and has demonstrated that it provides a simpler way to perform simulations and visualize results compared to AnnAGNPS.
  • PublicationOpen Access
    Model prediction capacity of ephemeral gully evolution in conservation tillage systems
    (Wiley, 2021) Luquin Oroz, Eduardo Adrián; Campo-Bescós, Miguel; Muñoz Carpena, Rafael; Bingner, R.L.; Cruse, Richard M.; Momm, Henrique G.; Wells, R.; Casalí Sarasíbar, Javier; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ephemeral gully (EG) erosion has an important impact on agricultural soil losses and increases field surface hydrology connectivity and transport of pollutants to nearby water bodies. Watershed models including an EG component are scarce and not yet properly evaluated. The objective of this study is to evaluate the capacity of one such tool, AnnAGNPS, to simulate the evolution of two EG formed in a conservation tillage system. The dataset for model testing included runoff measurements and EG morphological characteristics during 3 years. Model evaluation focused on EG evolution of volume, width, and length model outputs, and included calibration and testing phases and a global sensitivity analysis (GSA). While the model did not fully reproduce width and length, the model efficiency to simulate EG volume was satisfactory for both calibration and testing phases, supporting the watershed management objectives of the model. GSA revealed that the most sensitive factors were EG depth, critical shear stress, headcut detachment exponent coefficient b, and headcut detachment leading coefficient a. For EG outputs the model was additive, showing low sensitivity to interactions between the inputs. Prediction of EG spatial evolution on conservation tillage systems requires improved development of gullyerosion components, since many of the processes were developed originally for traditional tillage practices or larger channel systems. Our results identify the need for future research when EG form within conservation tillage systems, in particular to study gully headcut, soil erodibility, and width functions specific to these practices.