Elizondo Martínez, Sonia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Elizondo Martínez

First Name

Sonia

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    TipTrap: a co-located direct manipulation technique for acoustically levitated content
    (ACM, 2022) Jankauskis, Eimontas; Elizondo Martínez, Sonia; Montano Murillo, Roberto; Marzo Pérez, Asier; Martinez Plasencia, Diego; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Acoustic levitation has emerged as a promising approach for mid-air displays, by using multiple levitated particles as 3D voxels, cloth and thread props, or high-speed tracer particles, under the promise of creating 3D displays that users can see, hear and feel with their bare eyes, ears and hands. However, interaction with this mid-air content always occurred at a distance, since external objects in the display volume (e.g. user’s hands) can disturb the acoustic fields and make the particles fall. This paper proposes TipTrap, a co-located direct manipulation technique for acoustically levitated particles. TipTrap leverages the reflection of ultrasound on the users’ skin and employs a closed-loop system to create functional acoustic traps 2.1 mm below the fingertips, and addresses its 3 basic stages: selection, manipulation and deselection. We use Finite-Differences Time Domain (FDTD) simulations to explain the principles enabling TipTrap, and explore how finger reflections and user strategies influence the quality of the traps (e.g. approaching direction, orientation and tracking errors), and use these results to design our technique. We then implement the technique, characterizing its performance with a robotic hand setup and finish with an exploration of the ability of TipTrap to manipulate different types of levitated content.
  • PublicationOpen Access
    Enhancing the quality of amplitude patterns using time-multiplexed virtual acoustic fields
    (American Institute of Physics, 2023) Elizondo Martínez, Sonia; Ezcurdia Aguirre, Íñigo Fermín; Goñi Carnicero, Jaime; Galar Idoate, Mikel; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Ultrasonic fields can push and levitate particles, heat up materials, induce contactless tactile stimuli, or affect the blood-brain barrier. Current phased-arrays can create dynamic amplitude patterns, but their quality may be insufficient due to the limited density of emitters. On the other hand, passive modulators can provide high quality, but only static patterns can be generated. Here, we show and evaluate how the average of multiple time-multiplexed amplitude fields improves the resolution of the obtained patterns when compared with the traditional single-emission method. We optimize the non-linear problem of decomposing a target amplitude field into multiple fields considering the limitations of the phased-array. The presented technique improves the quality for existing setups without modifying the equipment, having the potential to improve bio-printing, haptic devices, or ultrasonic medical treatments.