Person:
Fernández Calvet, Ariadna

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Fernández Calvet

First Name

Ariadna

person.page.departamento

Producción Agraria

person.page.instituteName

ORCID

0000-0002-3340-703X

person.page.upna

810915

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Antagonistic pleiotropy in the bifunctional surface protein fadl (OmpP1) during adaptation of Haemophilus influenzae to chronic lung infection associated with chronic obstructive pulmonary disease
    (American Society for Microbiology, 2018) Moleres Apilluelo, Javier; Fernández Calvet, Ariadna; Ehrlich, Rachel L.; Martí, Sara; Pérez Regidor, Lucía; Euba, Begoña; Rodríguez Arce, Irene; Balashov, Sergey; Cuevas, Ester; Liñares, Josefina; Ardanuy, Carmen; Martín Santamaría, Sonsoles; Ehrlich, Garth D.; Mell, Joshua Chang; Garmendia García, Juncal; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL’s interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi’s ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics. IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium’s ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains’ niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.
  • PublicationOpen Access
    Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae
    (Springer Nature, 2017) Euba, Begoña; López López, Nahikari; Rodríguez Arce, Irene; Fernández Calvet, Ariadna; Barberán, Montserrat; Caturla, Nuria; Martí, Sara; Díez Martínez, Roberto; Garmendia García, Juncal; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens β defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.
  • PublicationOpen Access
    In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling
    (American Society for Microbiology, 2023) Rapún Araiz, Beatriz; Sorzabal-Bellido, Ioritz; Asensio López, Javier; Lázaro-Díez, María; Ariz Galilea, Mikel; Sobejano de la Merced, Carlos; Euba, Begoña; Fernández Calvet, Ariadna; Cortés Domínguez, Iván; Burgui Erice, Saioa; Toledo Arana, Alejandro; Ortiz de Solórzano, Carlos; Garmendia García, Juncal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Standardized clinical procedures for antibiotic administration rely on pathogen identification and antibiotic susceptibility testing, often performed on single-colony bacterial isolates. For respiratory pathogens, this could be questionable, as chronic patients may be persistently colonized by multiple clones or lineages from the same bacterial pathogen species. Indeed, multiple strains of nontypeable Haemophilus influenzae, with different antibiotic susceptibility profiles, can be co-isolated from cystic fibrosis and chronic obstructive pulmonary disease sputum specimens. Despite this clinical evidence, we lack information about the dynamics of H. influenzae polyclonal infections, which limits the optimization of therapeutics. Here, we present the engineering and validation of a plasmid toolkit (pTBH, toolbox for Haemophilus), with standardized modules consisting of six reporter genes for fluorescent or bioluminescent labeling of H. influenzae. This plasmid set was independently introduced in a panel of genomically and phenotypically different H. influenzae strains, and two of them were used as a proof of principle to analyze mixed biofilm growth architecture and antibiotic efficacy, and to visualize the dynamics of alveolar epithelial co-infection. The mixed biofilms showed a bilayer architecture, and antibiotic efficacy correlated with the antibiotic susceptibility of the respective single-species strains. Furthermore, differential kinetics of bacterial intracellular location within subcellular acidic compartments were quantified upon co-infection of cultured airway epithelial cells. Overall, we present a panel of novel plasmid tools and quantitative image analysis methods with the potential to be used in a whole range of bacterial host species, assay types, and¿or conditions and generate meaningful information for clinically relevant settings.
  • PublicationOpen Access
    Inactivation of the Thymidylate synthase thyA in non-typeable Haemophilus influenzae modulates antibiotic resistance and has a strong impact on its interplay with the host airways
    (Frontiers Media, 2017) Rodríguez Arce, Irene; Martí, Sara; Euba, Begoña; Fernández Calvet, Ariadna; Moleres Apilluelo, Javier; López López, Nahikari; Barberán, Montserrat; Ramos Vivas, José; Tubau, Fe; Losa, Carmen; Ardanuy, Carmen; Leiva, José; Yuste, José R.; Garmendia García, Juncal; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Antibacterial treatment with cotrimoxazol (TxS), a combination of trimethoprim and sulfamethoxazole, generates resistance by, among others, acquisition of thymidine auxotrophy associated with mutations in the thymidylate synthase gene thyA, which can modify the biology of infection. The opportunistic pathogen non-typeable Haemophilus influenzae (NTHi) is frequently encountered in the lower airways of chronic obstructive pulmonary disease (COPD) patients, and associated with acute exacerbation of COPD symptoms. Increasing resistance of NTHi to TxS limits its suitability as initial antibacterial against COPD exacerbation, although its relationship with thymidine auxotrophy is unknown. In this study, the analysis of 2,542 NTHi isolates recovered at Bellvitge University Hospital (Spain) in the period 2010–2014 revealed 119 strains forming slow-growing colonies on the thymidine low concentration medium Mueller Hinton Fastidious, including one strain isolated from a COPD patient undergoing TxS therapy that was a reversible thymidine auxotroph. To assess the impact of thymidine auxotrophy in the NTHi-host interplay during respiratory infection, thyA mutants were generated in both the clinical isolate NTHi375 and the reference strain RdKW20. Inactivation of the thyA gene increased TxS resistance, but also promoted morphological changes consistent with elongation and impaired bacterial division, which altered H. influenzae self-aggregation, phosphorylcholine level, C3b deposition, and airway epithelial infection patterns. Availability of external thymidine contributed to overcome such auxotrophy and TxS effect, potentially facilitated by the nucleoside transporter nupC. Although, thyA inactivation resulted in bacterial attenuation in a lung infection mouse model, it also rendered a lower clearance upon a TxS challenge in vivo. Thus, our results show that thymidine auxotrophy modulates both the NTHi host airway interplay and antibiotic resistance, which should be considered at the clinical setting for the consequences of TxS administration.