Cornejo Ibergallartu, Alfonso
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Cornejo Ibergallartu
First Name
Alfonso
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling(Springer, 2018) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Arzamendi Manterola, Gurutze; Garrido Segovia, Julián José; Gil Idoate, María José; Cornejo Ibergallartu, Alfonso; Martínez Merino, Víctor; Química Aplicada; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2 K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1 < kh2 < kh3 < kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2 K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5 kJ mol−1 for the first hydrolysis to 39.2 kJ mol−1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.Publication Open Access Comprehensive kinetics of hydrolysis of organotriethoxysilanes by 29Si NMR(American Chemical Society, 2019) Moriones Jiménez, Paula; Arzamendi Manterola, Gurutze; Cornejo Ibergallartu, Alfonso; Garrido Segovia, Julián José; Echeverría Morrás, Jesús; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The kinetics of several representative hybrid precursors were studied via 29Si NMR: three alkyl precursors, methyltriethoxysilane, ethyltriethoxysilane, and propyltriethoxysilane; as well as two unsaturated radicals, vinyltriethoxysilane and phenyltriethoxysilane. The reaction rate is related to the chemical shift of 29Si in the NMR spectra, which gives information about the electronic density of the Si atoms and the inductive effects of substituents. The concentration of the precursors decreased exponentially with time, and the intermediate products of hydrolysis and the beginning of the condensation reactions showed curves characteristic of sequential reactions, with a similar distribution of the species as a function of the fractional conversion. For all of the precursors, condensation started when the most hydrolyzed species reached a maximum concentration of 0.30 M, when the precursor had run out. A prediction following the developed mathematical model fits the experimental results in line with a common pathway described by eight parameters.Publication Open Access Fe3O4-SiO2 mesoporous core/shell nanoparticles for magnetic field-induced ibuprofen-controlled release(American Chemical Society, 2022-12-23) García Rodríguez, Lucía; Garayo Urabayen, Eneko; López Ortega, Alberto; Galarreta Rodríguez, Itziar; Cervera Gabalda, Laura María; Cruz Quesada, Guillermo; Cornejo Ibergallartu, Alfonso; Garrido Segovia, Julián José; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2020; Gobierno de Navarra / Nafarroako GobernuaHybrid magnetic nanoparticles made up of an iron oxide, Fe3O4, core and a mesoporous SiO2 shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol—gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/gFe3O4, measured at an amplitude of 400 Oe and a frequency of 307 kHz). Using ibuprofen as a model drug, the specific surface area (231 m2/g) of the porous structure exhibits a high molecule loading capacity (10 wt %), and controlled drug release efficiency (67%) can be achieved using the external AC magnetic field for short time periods (5 min), showing faster and higher drug desorption compared to that of similar stimulus-responsive iron oxide-based nanocarriers. In addition, it is demonstrated that the magnetic field-induced drug release shows higher efficiency compared to that of the sustained release at fixed temperatures (47 and 53% for 37 and 42 °C, respectively), considering that the maximum temperature reached during the exposure to the magnetic field is well below (31 °C). Therefore, it can be hypothesized that short periods of exposure to the oscillating field induce much greater heating within the nanoparticles than in the external solution.