Person:
Sanchis Gúrpide, Pablo

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sanchis Gúrpide

First Name

Pablo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-1201-4827

person.page.upna

2057

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    Zero-loss switching in LLC resonant converters under discontinuous conduction mode: analysis and design methodology
    (IEEE, 2023) Elizondo Martínez, David; Barrios Rípodas, Ernesto; Larequi, Íñigo; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Publikoa Unibertsitate
    Many thriving applications where isolation is required, such as LED drivers, traction and EV fast charging, implement LLC resonant converters, particularly when voltage regulation is not required or an additional conversion stage is in charge of it. The LLC converter can be operated under discontinuous conduction mode (DCM), due to its advantages such as unregulated and sensorless operation, fixed switching frequency and voltage gain, and zero-current switching (ZCS). However, ZCS results in EMI and switching losses in the primary converter, particularly for≥1200-V devices. Alternatively, zero-loss switching (ZLS) can be accomplished by means of a proper design of the LLC converter, overcoming the drawbacks of ZCS. The focus of this paper is to perform an exhaustive research on the LLC converter under DCM-ZLS: discontinuous conduction mode with lossless switching in the primary and secondary sides. As a result of this analysis, a set of design boundaries are deduced for parameters such as the magnetizing inductance, the leakage inductance, and the gate resistance. A comprehensive, step-by-step design methodology is proposed and applied to a 18-kW, 200-kHz test bench. The designed parameters are implemented in the converter and several experiments are conducted, including a test at rated input voltage and rated power (600 V, 18 kW). The conduction states studied theoretically in the analysis of the LLC converter are identified in the experimental results, and the operation of the test bench under DCM-ZLS is verified.
  • PublicationOpen Access
    High frequency power transformers with foil windings: maximum interleaving and optimal design
    (IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Foil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.
  • PublicationOpen Access
    Novel three-phase topology for cascaded multilevel medium-voltage conversion systems in large-scale PV plants
    (IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Solar photovoltaic renewable energy systems are expanding in the power sector thanks to its increasingly competitive prices. Traditionally, large-scale PV plants have reduced their cost by increasing the power ratings of the inverters and the line-frequency transformers. However, cost-reduction limits of large-scale PV plants are being reached. Cascaded converters have appeared as a solution to continue reducing the cost of large PV plants as they reduce the wiring cost. In this paper, a novel three-phase topology for cascaded conversion structures is proposed. It only has 2 conversion steps, one without switching losses. Hence, it increases the efficiency and reduces the cost of the previously proposed cascaded conversion systems. The topology is patent pending.
  • PublicationOpen Access
    Medium-voltage cascaded sequential topology for large-scale PV plants
    (Institute of Electrical and Electronics Engineers Inc., 2021) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Balda Belzunegui, Julián; Navarrete, Manuel; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Photovoltaic (PV) conversion systems are in continuous development due to their increasingly competitive prices. The traditional configuration of large-scale PV plants is based on high-power central inverters, which have reduced their cost by increasing their power rating. However, this cost reduction is expected to saturate in the near future, mainly due to an increase in the cost of the dc wiring. Cascaded conversion systems have appeared as potential solutions to continue reducing the PV plant cost. They consist of several conversion units whose ac outputs are connected in series. This enables the power-rating reduction of each individual conversion unit, while maintaining the power rating of the conversion structure. Thus, the conversion units are placed closer to the PV panels, reducing the dc wiring cost. In this paper, a novel three-phase topology for medium-voltage cascaded conversion systems is presented. The proposed topology is formed of several conversion units, each one with a reduced number of conversion stages, namely, dc/ac, medium-frequency isolation and ac/ac. Moreover, thanks to its sequential operation and modulation technique, zero-voltage switching and zero-current switching are achieved in all conversion stages. In this way, with respect to the configuration with central inverters, the proposed topology has the advantages of cascaded conversion systems. In comparison to previously investigated cascaded topologies, the proposed topology also presents promising characteristics, representing a potential cost reduction and efficiency increase. An experimental validation of the topology is carried out in a laboratory prototype consisting of three conversion units.
  • PublicationOpen Access
    Dynamic modeling and simulation of a pressurized alkaline water electrolyzer: a multiphysics approach
    (IEEE, 2021) Iribarren Zabalegui, Álvaro; Barrios Rípodas, Ernesto; Ibaiondo, Harkaitz; Sánchez Ruiz, Alain; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a dynamic model for the simulation of pressurized alkaline water electrolyzers is presented. The model has been developed following a multiphysics approach, integrating electrochemical, thermodynamic, heat transfer and gas evolution processes in order to faithfully reproduce the complete dynamical behavior of these systems. The model has been implemented on MATLAB/Simulink and validated through experimental data from a 1 Nm3h-1 commercial alkaline water electrolyzer, and the simulated results have been found to be consistent with the real measured values. This model has a great potential to predict the behavior of alkaline water electrolyzers coupled with renewable energy sources, making it a very useful tool for designing efficient green hydrogen production systems.
  • PublicationOpen Access
    On the stability criteria for inverter current control loops with LCL output filters and varying grid impedance
    (IEEE, 2017) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The use of LC and LCL filters and grid impedance variations are creating new challenges on the controller design for current control loops of photovoltaic and wind turbine inverters. In the design process, stability criteria such as Bode and revised Bode are commonly used. This paper analyses the limitations of Bode and revised Bode criteria to reliably determine stability and proposes a sufficient and necessary stability criterion, based on the Nyquist criterion, but that makes use of the Bode diagram. The proposed criterion, named generalized Bode criterion, is always reliable and helps the controller design. Relative stability in complex control loops is also studied and a relative stability analysis is proposed. Finally, the generalized Bode criterion and the proposed relative stability analysis are illustrated with a practical example in which a PI is designed in order to guarantee stability and achieve relative stability.
  • PublicationOpen Access
    Dynamic modeling of a pressurized alkaline water electrolyzer: a multiphysics approach
    (IEEE, 2023) Iribarren Zabalegui, Álvaro; Elizondo Martínez, David; Barrios Rípodas, Ernesto; Ibaiondo, Harkaitz; Sánchez Ruiz, Alain; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper a dynamic model for the simulation of pressurized alkaline water electrolyzers is presented. The model has been developed following a multiphysics approach, integrating electrochemical, thermodynamic, heat transfer and gas evolution processes in order to faithfully reproduce the complete dynamical behavior of these systems. The model has been implemented on MATLAB/Simulink and validated through experimental data from a 1 Nm3/h commercial alkaline water electrolyzer. Validations have been performed under real scenarios where the electrolyzer is working with power profiles characteristic from renewable sources, wind and photovoltaic. The simulated results have been found to be consistent with the real measured values. This model has a great potential to predict the behavior of alkaline water electrolyzers coupled with renewable energy sources, making it a very useful tool for designing efficient green hydrogen production systems.
  • PublicationOpen Access
    Analytical design methodology for Litz-wired high-frequency power transformers
    (IEEE, 2015) Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the last quarter of a century, high-frequency (HF) transformer design has been one of the major concerns to power electronics designers in order to increase converter power densities and efficiencies. Conventional design methodologies are based on iterative processes and rules of thumb founded more on expertise than on theoretical developments. This paper presents an analytical design methodology for litz-wired HF power transformers that provides a deep insight into the transformer design problem making it a powerful tool for converter designers. The most suitable models for the calculation of core and winding losses and the transformer thermal resistance are first selected and then validated with a 5-kW 50-kHz commercial transformer for a photovoltaic application. Based on these models, the design methodology is finally proposed, reducing the design issue to directly solve a five-variable nonlinear optimization problem. The methodology is illustrated with a detailed design in terms of magnetic material, core geometry, and primary and secondary litz-wire sizing. The optimal design achieves a 46.5% power density increase and a higher efficiency of 99.70% when compared with the commercial one.
  • PublicationOpen Access
    Control of a photovoltaic array interfacing current-mode-controlled boost converter based on virtual impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Due to the nonlinear characteristics of a photovoltaic (PV) array, its regulation is highly dependent on the operating point. Focusing on a dc-dc boost converter, this paper first shows how the PV voltage and inductor current controls are affected by the PV array. It then proposes to emulate an impedance virtually connected to the PV array, making it possible to greatly improve the control robustness. Thanks to the proposed strategy, the crossover frequency variation for the whole operating range is reduced from 42 times for the traditional control to 3.5 times when emulating parallel resistance or to 1.4 times when emulating series and parallel resistances, all with simple implementation. Experimental results with a commercial PV inverter and a 4-kWp PV array validate the theoretical analysis and demonstrate the superior performance of the proposed control.
  • PublicationOpen Access
    Active control for medium-frequency transformers flux-balancing in a novel three-phase topology for cascaded conversion structures
    (IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Navarrete, Manuel; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Efficiency and power density are important parameters in the design of power electronics converters. In many applications, low-frequency transformers are being substituted for medium-frequency and high-frequency transformers in order to reduce the volume and therefore the cost of the transformer. However, preventing their saturation is a complex task. This paper studies the medium-frequency transformers' flux balancing in a novel three-phase topology for cascaded conversion structures.Based on the modulation technique of the converter, a method to directly measure the magnetizing current of the medium-frequency transformers is proposed in this paper. A control loop to regulate the dc value of the magnetizing current is also designed and developed. Simulation results validate the correct operation of the control loop, which prevents the transformer saturation.