Sanchis Gúrpide, Pablo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sanchis Gúrpide
First Name
Pablo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Applied method to model the thermal runaway of lithium-ion batteries(IEEE, 2021) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe thermal runaway (TR) is one of the most dangerous phenomena related to lithium-ion batteries. For this reason, there are different proposals in the literature for its modelling. Most of these proposed models take into account the decomposition reactions between the internal components of the cell, and base the adjustment of the parameters on numerous abuse tests that lead to the appearance of TR. However, these tests are destructive, require specific equipment, present a high economic cost and are very time consuming. This paper proposes a modelling method which enables the development of TR models with the use of fewer resources. This method is based on chemical kinetics, which allow a simplification of the general modelling process published in the literature. At the same time it maintains good accuracy and makes it possible to define the TR behavior of any type of cell, regardless of its chemistry, shape or size. Furthermore, the proposed method allows the use of the experimental results most commonly presented in the specialized literature, which significantly reduces the need for destructive testing. The presented modelling method achieves a good compromise between accuracy and applicability in the validations shown in the paper.Publication Open Access Supercapacitors: electrical characteristics, modelling, applications and future trends(IEEE, 2019) Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; San Martín Biurrun, Idoia; Eftekhari, Ali; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI020 RENEWABLE-STORAGEEnergy storage systems are playing an increasingly important role in a variety of applications, such as electric vehicles or grid-connected systems. In this context, supercapacitors (SCs) are gaining ground due to their high power density, good performance and long maintenance-free lifetime. For this reason, SCs are a hot research topic, and several papers are being published on material engineering, performance characterization, modelling and post-mortem analysis. A compilation of the most important millstones on this topic is essential to keep researchers on related fields updated about new potentials of this technology. This review paper covers recent research aspects and applications of SCs, highlighting the relationship between material properties and electrical characteristics. It begins with an explanation of the energy storage mechanisms and materials used by SCs. Based on these materials, the SCs are classified, their key features are summarised, and their electrochemical characteristics are related to electrical performance. Given the high interest in system modelling and the large number of papers published on this topic, modelling techniques are classified, explained and compared, addressing their strengths and weaknesses, and the experimental techniques used to measure the modelled properties are described. Finally, the market sectors in which SCs are successfully used, as well as their growth expectations are analysed. The analysis presented herein gives account of the expansion that SC market is currently undergoing and identifies the most promising research trends on this field.Publication Open Access Methodology for sizing stand-alone hybrid systems: a case study of a traffic control system(Elsevier, 2018) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCThis paper proposes a methodology for sizing stand-alone hybrid photovoltaic-wind power generation systems. This methodology makes it possible to optimise the overall performance of the stand-alone system components, based on the premise of guaranteeing the power supply throughout the useful life of the installation at a minimum cost. The sizing is performed in two stages. Firstly, the components of the wind and photovoltaic power generation subsystem are obtained and, secondly, the size of the storage subsystem is determined. For the storage subsystem sizing, account is taken of the variation in efficiency according to the operating point and also the deterioration of the subsystem due to aging and, therefore, the loss of available energy during the useful life of the installation. This methodology is applied to a stand-alone traffic control system located on a secondary road in the Autonomous Community of Valencia (Spain). This system comprises wind and photovoltaic power generation components, a lithium battery bank and various traffic management components. Finally, an analysis of the proposed sizing is made. Satisfactory results are obtained, showing how the proposed methodology makes it possible to optimise the sizing of stand-alone systems with regard to the size of its components, cost and operation.