Jáuregui Mosquera, Iván

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Jáuregui Mosquera

First Name

Iván

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Unraveling the role of transient starch in the response of Arabidopsis to elevated CO2 under long-day conditions
    (Elsevier, 2018) Jáuregui Mosquera, Iván; Pozueta Romero, Javier; Aparicio Tejo, Pedro María; Baroja Fernández, Edurne; Aranjuelo Michelena, Iker; Zientziak; Ciencias; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Previous studies on Arabidopsis under long-term exposure to elevated CO2 have been conducted using starch synthesis and breakdown mutants cultured under short day conditions. These studies showed that starch synthesis can ameliorate the photosynthetic reduction caused by soluble sugar-mediated feedback regulation. In this work we characterized the effect of long-term exposure to elevated CO2 (800 ppm) on growth, photosynthesis and content of primary photosynthates in long-day grown wild type plants as well as the near starch-less (aps1) and the starch-excess (gwd) mutants. Notably, elevated CO2 promoted growth of both wild type and aps1 plants but had no effect on gwd plants. Growth promotion by elevated CO2 was accompanied by an increased net photosynthesis in WT and aps1 plants. However, the plants with the highest starch content (wild type at elevated CO2, gwd at ambient CO2, and gwd at elevated CO2) were the ones that suffered decreased in in vivo maximum carboxylation rate of Rubisco, and therefore, photosynthetic down-regulation. Further, the photosynthetic rates of wild type at elevated CO2 and gwd at elevated CO2 were acclimated to elevated CO2. Notably, elevated CO2 promoted the accumulation of stress-responsive and senescence-associated amino acid markers in gwd plants. The results presented in this work provide evidence that under long-day conditions, temporary storage of overflow photosynthate as starch negatively affect Rubisco performance. These data are consistent with earlier hypothesis that photosynthetic acclimation can be caused by accelerated senescence and hindrance of CO2 diffusion to the stroma due to accumulation of large starch granules.
  • PublicationOpen Access
    Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions
    (Public Library of Science, 2017) Rueda López, Marina; Pascual, María Belén; Pallero, Mercedes; Henao, Luisa María; Lasa Larrea, Berta; Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Cánovas, Francisco M.; Ávila, Concepción; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In this work, the role of the pine transcriptional regulator Dof 5 in carbon and nitrogen metabolism has been examined in poplar trees. The overexpression of the gene and potential effects on growth and biomass production were compared between trees growing in a growth chamber under controlled conditions and trees growing in a field trial during two growth seasons. Ten-week-old transgenic poplars exhibited higher growth than untransformed controls and exhibited enhanced capacity for inorganic nitrogen uptake in the form of nitrate. Furthermore, the transgenic trees accumulated significantly more carbohydrates such as glucose, fructose, sucrose and starch. Lignin content increased in the basal part of the stem likely due to the thicker stem of the transformed plants. The enhanced levels of lignin were correlated with higher expression of the PAL1 and GS1.3 genes, which encode key enzymes involved in the phenylalanine deamination required for lignin biosynthesis. However, the results in the field trial experiment diverged from those observed in the chamber system. The lines overexpressing PpDof5 showed attenuated growth during the two growing seasons and no modification of carbon or nitrogen metabolism. These results were not associated with a decrease in the expression of the transgene, but they can be ascribed to the nitrogen available in the field soil compared to that available for growth under controlled conditions. This work highlights the paramount importance of testing transgenic lines in field trials.
  • PublicationOpen Access
    The physiological implications of urease inhibitors on N metabolism during germination of Pisum sativum and Spinacea oleracea seeds
    (Elsevier, 2012-03-08) Ariz Arnedo, Idoia; Cruchaga Moso, Saioa; Lasa Larrea, Berta; Morán Juez, José Fernando; Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The development of new nitrogen fertilizers is necessary to optimize crop production whilst improving the environmental aspects arising from the use of nitrogenous fertilization as a cultural practice. The use of urease inhibitors aims to improve the efficiency of urea as a nitrogen fertilizer by preventing its loss from the soil as ammonia. However, although the action of urease inhibitors is aimed at the urease activity in soil, their availability for the plant may affect its urease activity. The aim of this work was therefore to evaluate the effect of two urease inhibitors, namely acetohydroxamic acid (AHA) and N-(n-butyl) thiophosphoric triamide (NBPT), on the germination of pea and spinach seeds. The results obtained show that urease inhibitors do not affect the germination process to any significant degree, with the only process affected being imbibition in spinach, thus also suggesting different urease activities for both plants. Our findings therefore suggest an activity other than the previously reported urolytic activity for urease in spinach. Furthermore, of the two inhibitors tested, NBPT was found to be the most effective at inhibiting urease activity, especially in pea seedlings.
  • PublicationOpen Access
    Elevated CO2 improved the growth of a double nitrate reductase defective mutant of Arabidopsis thaliana: the importance of maintaining a high energy status
    (Elsevier, 2017) Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Baroja Fernández, Edurne; Ávila, Concepción; Aranjuelo Michelena, Iker; Natura Ingurunearen Zientziak; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Impairments in leaf nitrogen (N) assimilation in C3 plants have been identified as processes conditioning photosynthesis under elevated [CO2], especially when N is supplied as nitrate. Leaf N status is usually improved under ammonium nutrition and elevated [CO2]. However, ammonium fertilization is usually accompanied by the appearance of oxidative stress symptoms, which constrains plant development. To understand how the limitations of direct fertilization with ammonium (growth reduction attributed to ammonium toxicity) can be overcome, the effects of elevated [CO2] (800 ppm) exposure were studied in the Arabidopsis thaliana double nitrate reductase defective mutant, nia1-1/chl3-5 (which preferentially assimilates ammonium as its nitrogen source). Analysis of the physiology, metabolites and gene expression was carried out in roots and shoot organs. Our study clearly showed that elevated [CO2] improved the inhibited phenotype of the nitrate reductase double mutant. Both the photosynthetic rates and the leaf N content of the NR mutant under elevated CO2 were similar to wild type plants. The growth of the nitrate reductase mutant was linked to its ability to overcome ammonium-associated photoinhibition processes at 800 ppm [CO2]. More specifically: (i) the capacity of NR mutants to equilibrate energy availability, as reflected by the electron transport equilibrium reached (photosynthesis, photorespiration and respiration), (ii) as well as by the upregulation of genes involved in stress tolerance were identified as the processes involved in the improved performance of NR mutants.