Rotinen Díaz, Mirja Sofia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rotinen Díaz
First Name
Mirja Sofia
person.page.departamento
Ciencias de la Salud
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Scaffold attachment factor B1 regulates androgen degradation pathways in prostate cancer(E-Century Publishing, 2021) Yang, Julie Suan-Wei; Qian, Chen; You, Sungyong; Rotinen Díaz, Mirja Sofia; Posadas, Edwin M.; Freedland, Stephen J.; Di Vizio, Dolores; Kim, Jayoung; Freeman, Michael R.; Ciencias de la Salud; Osasun ZientziakThe nuclear matrix protein Scaffold Attachment Factor B1 (SAFB1, SAFB) can act in prostate cancer (PCa) as an androgen receptor (AR) co-repressor that functions through epigenetic silencing of AR targets, such as prostate specific antigen (PSA, KLK3). Genomic profiling of SAFB1-silenced PCa cells indicated that SAFB1 may play a role in modulating intracrine androgen levels through the regulation of UDP-glucuronosyltransferase (UGT) genes, which inactivate steroid hormones. Gene silencing of SAFB1 resulted in increased levels of free dihydrotesterosterone (DHT), and increased resistance to the AR inhibitor enzalutamide. SAFB1 silencing suppressed expression of the UDP-glucuronosyltransferase family 2 member B15 gene (UGT2B15) and the closely related UGT2B17 gene, which encode proteins that irreversibly inactivate testosterone (T) and DHT. Analysis of human data indicated that genomic loss at the SAFB locus, or down-regulation of expression of the SAFB gene, is associated with aggressive PCa. These findings identify SAFB1 as an important regulator of androgen catabolism in PCa and suggest that loss or inactivation of this protein may promote AR activity by retention of active androgen in tumor cells.Publication Open Access Targeting key players of neuroendocrine differentiation in prostate cancer(MDPI, 2023) Zamora Álvarez, Irene; Freeman, Michael R.; Encío Martínez, Ignacio; Rotinen Díaz, Mirja Sofia; Ciencias de la Salud; Osasun ZientziakNeuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.