Garayo Urabayen, Eneko

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Garayo Urabayen

First Name

Eneko

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Nanoflowers versus magnetosomes: comparison between two promising candidates for magnetic hyperthermia therapy
    (IEEE, 2021) Jefremovas, Elizabeth M.; Gandarias, Lucía; Rodrigo, Irati; Marcano, Lourdes; Gruttner, Cordula; García, José Ángel; Garayo Urabayen, Eneko; Orue, Iñaki; García-Prieto, Ana; Muela, Alicia; Fernández-Gubieda, María Luisa; Alonso Masa, Javier; Fernández Barquín, Luis; Ciencias; Zientziak
    Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the mostpromising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance andtheir biocompatibility. Nonetheless, up to date, the literature comparing the heating efficiency of magnetiteand maghemite nanoparticles of similar size is scarce. To fill this gap, here we provide a comparison between commercial Synomag Nanoflowers (pure maghemite) and bacterial magnetosomes (pure magnetite)synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldenseof〈D〉 ≈40–45 nm. Bothtypes of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity andstability. The structural and magnetic properties in both nanoparticle ensembles have been studied by meansof X–Ray Diffraction, Transmission Electron Microscopy, X–Ray Absorption Spectroscopy, and SQUIDmagnetometry. The heating efficiency has been analyzed in both systems using AC magnetometry at severalfield amplitudes (0–88 mT) and frequencies (130, 300, and 530 kHz).