Garayo Urabayen, Eneko
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Garayo Urabayen
First Name
Eneko
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Heatable magnetic nanocomposites with Fe3O4 nanocubes(Elsevier, 2022-09-27) Larumbe Abuin, Silvia; Lecumberri, Cristina; Monteserín, María; Fernández, Lorea; Medrano Fernández, Ángel María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The development of magnetic self-heating polymers is an area of great interest for many applications. The intrinsic magnetic properties of the magnetic fillers play a key role in the final heating capability of these nanocomposites. Thus, it has been already reported the improvement of the heating efficiency on Fe3O4 magnetic nanocubes with respect to spherical nanoparticles with the similar mean size1. This result is due to the contribution of the magnetic anisotropy giving rise to higher magnetic coercivity and as consequence, higher SAR (Specific Absorption Rate) values. In this work, well- defined Fe3O4 nanocubes were synthesized through thermal decomposition processes with a mean particle diameter around 70 nm (TEM) (Fig. 1). The SAR values were estimated through the measurement of the AC hysteresis loops, obtaining values of around 900 W/g for the dispersion of the nanocubes in water and values of 350 W/g for the nanocubes dispersed in agar (0.5% wt), with a frequency of 403 kHz and a field amplitude of 30kA/m . In this case, the decrease of the SAR values is due to the inmovilization of the particles in the medium and hence, the Brownian movement of the particles. The temperature increase was also characterized, where a clear enhancement of the heating properties was obtained for nanocubes comparing with spherical nanoparticles of similar mean diameter (Fig. 2). Finally, the heating capacity of the nanocomposites (30% weight of magnetic nanoparticles) was studied through the application of an external AC magnetic field with a Helmholtz coil (319 kHz, 400A, 200G approximately, induction equipment model EasyHeat Ambrell). The effect of the thickness of the polymeric discs on the final temperature achieved was studied (2 and 4 mm thickness and 30 mm diameter). Thus, temperatures of 100 °C or 250 °C were reached after 2 min for the nanocomposites with thicknesses of 2 and 4 mm respectively.Publication Open Access Fe-C nanoparticles obtained from thermal decomposition employing sugars as reducing agents(Elsevier, 2020) Cervera Gabalda, Laura María; Pérez de Landazábal Berganzo, José Ignacio; Garayo Urabayen, Eneko; Monteserín, María; Larumbe Abuin, Silvia; Martín, F.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of the work is to present a comparative analysis (structural and magnetic) of Fe-C nanocomposites obtained by the thermal decomposition of sugars (fructose, glucose and sucrose) employing FeCl3 as Fe3+ precursor. The thermal decomposition was followed through Thermogravimetry (TGA) and Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results indicate the reduction of Fe3+ under the performed thermal treatments and the achievement at high annealing temperatures of Fe-C nanostructures (coexistence of α-Fe and Fe3C nanoparticles surrounded by a carbon matrix). The magnetic characterization performed by dc SQUID magnetometry, shows an antiferromagnetic response in the initial stages of the decomposition process, and a ferromagnetic behavior linked to the Fe-based nanoparticles. The magnetic induction heating was analyzed through the ac hysteresis loops. Moderate Specific Absorption Rate (SAR) is obtained in Fe-C nanoparticles (~ 70 W/gFe), ascribed to the large nanoparticle size. The combination of porous carbon structure and ferromagnetic response of the Fe-C nanoparticles (i.e. local temperature increase under ac magnetic field) enlarge the emerging applications of these carbonaceous nanocomposites.