Garayo Urabayen, Eneko
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Garayo Urabayen
First Name
Eneko
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Nanoscale engineering of cobalt-gallium co-doped ferrites: a strategy to enhance high-frequency theranostic magnetic materials(American Chemical Society, 2025-07-01) Galarreta Rodríguez, Itziar; Liguori, Deborah; Garayo Urabayen, Eneko; Muzzi, Beatrice; Cervera Gabalda, Laura María; Rubio Zuazo, Juan; Gomide, Guilherme; Depeyrot, Jérõm; López Ortega, Alberto; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Publica de Navarra / Nafarroako Unibertsitate PublikoaThe nanoscale engineering of doped iron oxide magnetic nanoparticles has attracted significant interest in recent years for high-frequency theragnostic applications, where simultaneous diagnosis and therapy are required. In particular, their ability to generate localized heating under alternating magnetic fields makes them ideal candidates for magnetic hyperthermia, a noninvasive cancer treatment technique. However, understanding the complex interplay between multiple dopant cations and their impact on dynamic magnetic behavior remains a significant challenge. In this work, we present a comprehensive study on how two differently marked cations (Co2+ and Ga3+) can modify both the magnetic properties of these nanoparticles and their efficiency in heat generation under alternating magnetic fields. To this end, a series of nanoparticles with the formula CoxGa0.15Fe2.85-xO4 (0 < x < 0.3) was prepared via thermal decomposition, enabling the production of monodisperse nanocrystals with high crystallinity and precise stoichiometric control. Their exhaustive structural and magnetic characterization confirmed site-selective incorporation of Ga3+ into tetrahedral sites and Co2+ into octahedral sites. Increasing the cobalt content within the gallium-doped framework leads to enhanced magnetocrystalline anisotropy and higher saturation magnetization, both crucial parameters for efficient heat dissipation in magnetic hyperthermia. The study further demonstrates that the dynamic magnetic response of these nanostructures is strongly influenced by the interplay between doping composition, anisotropy, and the amplitude of the applied magnetic field. These findings highlight the effectiveness of nanoscale codoping strategies in fine-tuning magnetic behavior and optimizing the performance of spinel ferrite nanoparticles for advanced biomedical and technological applications, particularly high-frequency magnetic hyperthermia.Publication Open Access Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization(Taylor & Francis, 2020) Rodrigo, Irati; Castellanos Rubio, Idoia; Garayo Urabayen, Eneko; Arriortua, Oihane K.; Insausti, Maite; Ciencias; ZientziakAim: The Specific Absorption Rate (SAR) is the key parameter to optimize the effectiveness of magnetic nanoparticles in magnetic hyperthermia. AC magnetometry arises as a powerful technique to quantify the SAR by computing the hysteresis loops' area. However, currently available devices produce quite limited magnetic field intensities, below 45mT, which are often insufficient to obtain major hysteresis loops and so a more complete and understandable magneticcharacterization. This limitation leads to a lack of information concerning some basic properties, like the maximum attainable (SAR) as a function of particles' size and excitation frequencies, or the role of the mechanical rotation in liquid samples. Methods: To fill this gap, we have developed a versatile high field AC magnetometer, capable of working at a wide range of magnetic hyperthermia frequencies (100 kHz–1MHz) and up to field intensities of 90mT. Additionally, our device incorporates a variable temperature system for continuous measurements between 220 and 380 K. We have optimized the geometrical properties of the induction coil that maximize the generated magnetic field intensity. Results: To illustrate the potency of our device, we present and model a series of measurements performed in liquid and frozen solutions of magnetic particles with sizes ranging from 16 to 29 nm. Conclusion: We show that AC magnetometry becomes a very reliable technique to determine the effective anisotropy constant of single domains, to study the impact of the mechanical orientation in the SAR and to choose the optimal excitation parameters to maximize heating production under human safety limits.Publication Open Access Iron oxide nanorings and nanotubes for magnetic hyperthermia: the problem of intraparticle interactions(MDPI, 2021) Das, Raja; Alonso Masa, Javier; Kalappattil, Vijaysankar; Nemati, Zohreh; Rodrigo, Irati; Garayo Urabayen, Eneko; García, José Ángel; Manh-Huong, Phan; Srikanth, Hariharan; Ciencias; ZientziakMagnetic interactions can play an important role in the heating efficiency of magnetic nanoparticles. Although most of the time interparticle magnetic interactions are a dominant source, in specific cases such as multigranular nanostructures intraparticle interactions are also relevant and their effect is significant. In this work, we have prepared two different multigranular magnetic nanostructures of iron oxide, nanorings (NRs) and nanotubes (NTs), with a similar thickness but different lengths (55 nm for NRs and 470 nm for NTs). In this way, we find that the NTs present stronger intraparticle interactions than the NRs. Magnetometry and transverse susceptibility measurements show that the NTs possess a higher effective anisotropy and saturation magnetization. Despite this, the AC hysteresis loops obtained for the NRs (0-400 Oe, 300 kHz) are more squared, therefore giving rise to a higher heating efficiency (maximum specific absorption rate, SAR(max) = 110 W/g for the NRs and 80 W/g for the NTs at 400 Oe and 300 kHz). These results indicate that the weaker intraparticle interactions in the case of the NRs are in favor of magnetic hyperthermia in comparison with the NTs.Publication Open Access Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents(Wiley, 2019) Gandía Aguado, David; Gandarias, Lucía; Rodrigo, Irati; Robles García, Joshua; Das, Raja; Garayo Urabayen, Eneko; García, José Ángel; Ciencias; ZientziakMagnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.