Person:
Garayo Urabayen, Eneko

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Garayo Urabayen

First Name

Eneko

person.page.departamento

Física

ORCID

0000-0002-3144-7898

person.page.upna

811381

Name

Search Results

Now showing 1 - 10 of 12
  • PublicationEmbargo
    Monitoring structural transformations in metamagnetic shape memory alloys by non-contact GMI technology
    (IOP Publishing, 2023) Beato López, Juan Jesús; La Roca, Paulo Matías; Algueta-Miguel, Jose M.; Garayo Urabayen, Eneko; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Different applications based on metamagnetic shape memory alloy (MSMA) require monitoring the evolution of the martensitic transformation (MT) to optimize the actuation mechanism. To avoid interaction with the active material, a non-contact technique would be ideal. Nevertheless, non-contact detection involves complex methods like diffraction, optical analysis, or electromagnetic technology. The present work demonstrates that the MT can be monitored without interaction with the active material using a low-cost technology based on the Giant Magnetoimpedance (GMI) effect. The GMI sensor is based on a (CoFe)SiB soft magnetic wire submitted to an alternating current and whose second harmonic voltage variation allows to detect changes in the strength of the stray magnetic fields linked to the metamagnetic phase transition. The sensor has been tested using the MT of a NiMnInCo MSMA. A specific application for environmental temperature control using the non-contact GMI sensor is proposed.
  • PublicationOpen Access
    Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design
    (Elsevier, 2021) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Ugarte Martínez, María Dolores; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Superparamagnetic iron oxide nanoparticles (MNPs) have the potential to act as heat sources in magnetic hyperthermia. The key parameter for this application is the specific absorption rate (SAR), which must be as large as possible in order to optimize the hyperthermia treatment. We applied a Plackett-Burman fractional factorial design to investigate the effect of total iron concentration, ammonia concentration, reaction temperature, sonication time and percentage of ethanol in the aqueous media on the properties of iron oxide MNPs. Characterization techniques included total iron content, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, High Resolution Transmission Electron Microscopy, and Dynamic Magnetization. The reaction pathway in the coprecipitation reaction depended on the initial Fe concentration. Samples synthesized from 0.220 mol L−1 Fe yielded magnetite and metastable precipitates of iron oxyhydroxides. An initial solution made up of 0.110 mol L−1 total Fe and either 0.90 or 1.20 mol L−1 NH3(aq) led to the formation of magnetite nanoparticles. Sonication of the reaction media promoted a phase transformation of metastable oxyhydroxides to crystalline magnetite, the development of crystallinity, and the increase of specific absorption rate under dynamic magnetization.
  • PublicationOpen Access
    Preparation of selenium-based drug-modified polymeric ligand-functionalised Fe3O4 nanoparticles as multimodal drug carrier and magnetic hyperthermia inductor
    (MDPI, 2023) Galarreta Rodríguez, Itziar; Etxebeste-Mitxeltorena, Mikel; Moreno, Esther; Plano, Daniel; Sanmartín, Carmen; Megahed, Saad; Feliu, Neus; Parak, Wolfgang J.; Garayo Urabayen, Eneko; Gil de Muro, Izaskun; Lezama, Luis; Ruiz de Larramendi, Idoia; Insausti, Maite; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    In recent years, much effort has been invested into developing multifunctional drug delivery systems to overcome the drawbacks of conventional carriers. Magnetic nanoparticles are not generally used as carriers but can be functionalised with several different biomolecules and their size can be tailored to present a hyperthermia response, allowing for the design of multifunctional systems which can be active in therapies. In this work, we have designed a drug carrier nanosystem based on Fe3O4 nanoparticles with large heating power and 4-amino-2-pentylselenoquinazoline as an attached drug that exhibits oxidative properties and high selectivity against a variety of cancer malignant cells. For this propose, two samples composed of homogeneous Fe3O4 nanoparticles (NPs) with different sizes, shapes, and magnetic properties have been synthesised and characterised. The surface modification of the prepared Fe3O4 nanoparticles has been developed using copolymers composed of poly(ethylene-alt-maleic anhydride), dodecylamine, polyethylene glycol and the drug 4-amino-2-pentylselenoquinazoline. The obtained nanosystems were properly characterised. Their in vitro efficacy in colon cancer cells and as magnetic hyperthermia inductors was analysed, thereby leaving the door open for their potential application as multimodal agents.
  • PublicationOpen Access
    Martensitic transformation controlled by electromagnetic field: from experimental evidence to wireless actuator applications
    (Elsevier, 2022) Garayo Urabayen, Eneko; La Roca, Paulo Matías; Gómez Polo, Cristina; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua
    Mechanical actuators based on shape memory alloys (SMA) are becoming a key component in the development of novel soft robotic applications and surgically implantable devices. Their working principle relies in the temperature induced martensitic transformation (MT), which is responsible of the actuation mechanism. In this work, we found experimental evidence to show that the martensitic transformation can be controlled by electromagnetic field (EF) by a wireless process in ferromagnetic shape memory alloys. It is shown that the martensitic transformation can be driven by an external EF (frequency 45 kHz) while the specific absorption rate (SAR), which was determined through real-time dynamic magnetization measurements, allows the instantaneous monitoring of the transformation evolution. On the basis of the obtained results, we propose a strategy to achieve a battery-free wireless SMA actuator that can be remotely controlled. This concept can be applicable to other SMA material that exhibit a similar magneto-structural phase transition
  • PublicationOpen Access
    Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation
    (Springer, 2023) Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Beato López, Juan Jesús; La Roca, Paulo Matías; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Additive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis).
  • PublicationOpen Access
    Nanoflowers versus magnetosomes: comparison between two promising candidates for magnetic hyperthermia therapy
    (Institute of Electrical and Electronics Engineers Inc., 2021) Jefremovas, Elizabeth M.; Gandarias, Lucía; Rodrigo, Irati; Marcano, Lourdes; Gruttner, Cordula; García, José Ángel; Garayo Urabayen, Eneko; Orue, Iñaki; García-Prieto, Ana; Muela, Alicia; Fernández-Gubieda, María Luisa; Alonso, Javier; Fernández Barquín, Luis; Ciencias; Zientziak
    Magnetic Fluid Hyperthermia mediated by iron oxide nanoparticles is one of the mostpromising therapies for cancer treatment. Among the different candidates, magnetite and maghemite nanoparticles have revealed to be some of the most promising candidates due to both their performance andtheir biocompatibility. Nonetheless, up to date, the literature comparing the heating efficiency of magnetiteand maghemite nanoparticles of similar size is scarce. To fill this gap, here we provide a comparison between commercial Synomag Nanoflowers (pure maghemite) and bacterial magnetosomes (pure magnetite)synthesized by the magnetotactic bacterium Magnetospirillum gryphiswaldenseof〈D〉 ≈40–45 nm. Bothtypes of nanoparticles exhibit a high degree of crystallinity and an excellent degree of chemical purity andstability. The structural and magnetic properties in both nanoparticle ensembles have been studied by meansof X–Ray Diffraction, Transmission Electron Microscopy, X–Ray Absorption Spectroscopy, and SQUIDmagnetometry. The heating efficiency has been analyzed in both systems using AC magnetometry at severalfield amplitudes (0–88 mT) and frequencies (130, 300, and 530 kHz).
  • PublicationOpen Access
    Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization
    (Taylor & Francis, 2020) Rodrigo, Irati; Castellanos Rubio, Idoia; Garayo Urabayen, Eneko; Arriortua, Oihane K.; Insausti, Maite; Ciencias; Zientziak
    Aim: The Specific Absorption Rate (SAR) is the key parameter to optimize the effectiveness of magnetic nanoparticles in magnetic hyperthermia. AC magnetometry arises as a powerful technique to quantify the SAR by computing the hysteresis loops' area. However, currently available devices produce quite limited magnetic field intensities, below 45mT, which are often insufficient to obtain major hysteresis loops and so a more complete and understandable magneticcharacterization. This limitation leads to a lack of information concerning some basic properties, like the maximum attainable (SAR) as a function of particles' size and excitation frequencies, or the role of the mechanical rotation in liquid samples. Methods: To fill this gap, we have developed a versatile high field AC magnetometer, capable of working at a wide range of magnetic hyperthermia frequencies (100 kHz–1MHz) and up to field intensities of 90mT. Additionally, our device incorporates a variable temperature system for continuous measurements between 220 and 380 K. We have optimized the geometrical properties of the induction coil that maximize the generated magnetic field intensity. Results: To illustrate the potency of our device, we present and model a series of measurements performed in liquid and frozen solutions of magnetic particles with sizes ranging from 16 to 29 nm. Conclusion: We show that AC magnetometry becomes a very reliable technique to determine the effective anisotropy constant of single domains, to study the impact of the mechanical orientation in the SAR and to choose the optimal excitation parameters to maximize heating production under human safety limits.
  • PublicationOpen Access
    Iron oxide nanorings and nanotubes for magnetic hyperthermia: the problem of intraparticle interactions
    (MDPI, 2021) Das, Raja; Alonso Masa, Javier; Kalappattil, Vijaysankar; Nemati, Zohreh; Rodrigo, Irati; Garayo Urabayen, Eneko; García, José Ángel; Manh-Huong, Phan; Srikanth, Hariharan; Ciencias; Zientziak
    Magnetic interactions can play an important role in the heating efficiency of magnetic nanoparticles. Although most of the time interparticle magnetic interactions are a dominant source, in specific cases such as multigranular nanostructures intraparticle interactions are also relevant and their effect is significant. In this work, we have prepared two different multigranular magnetic nanostructures of iron oxide, nanorings (NRs) and nanotubes (NTs), with a similar thickness but different lengths (55 nm for NRs and 470 nm for NTs). In this way, we find that the NTs present stronger intraparticle interactions than the NRs. Magnetometry and transverse susceptibility measurements show that the NTs possess a higher effective anisotropy and saturation magnetization. Despite this, the AC hysteresis loops obtained for the NRs (0-400 Oe, 300 kHz) are more squared, therefore giving rise to a higher heating efficiency (maximum specific absorption rate, SAR(max) = 110 W/g for the NRs and 80 W/g for the NTs at 400 Oe and 300 kHz). These results indicate that the weaker intraparticle interactions in the case of the NRs are in favor of magnetic hyperthermia in comparison with the NTs.
  • PublicationOpen Access
    Magnetic binary encoding system based on 3D printing and GMI detection prototype
    (Elsevier, 2022) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Aresti Bartolomé, Maite; Soria Picón, Eneko; Pérez de Landazábal Berganzo, José Ignacio; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Zientziak; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the feasibility of a magnetic binary encoding system using 3D printing technology is analyzed. The study has a double interest, that is, the possibility of printing a 3D piece that contains the codified information and the development of a system for its decoding. For this purpose, magnetic nanoparticles (magnetite Fe3O4) were embedded in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL). Similar to a conventional barcode, a rectangular piece with an alternating pattern of strips with absence (only polymer) and a 5 wt% of embedded magnetic nanoparticles was 3D printed employing the Fused Deposition Modelling tech- nique (FDM). The information was decoded by means of a Giant Magnetoimpedance (GMI) sensor-based pro- totype, by scanning the surface of the piece and measuring the changes in the magnetic field. As sensor nucleus, an amorphous soft magnetic wire of nominal composition (Co0.94 Fe0.06)72.5 Si12.5 B15 was employed. The decoding prototype incorporates a homemade electronic sensor interface that permits, at the time, the GMI sensor excitation and the subsequent signal conditioning to optimize its response. The output signal enables the detection of the magnetite nanoparticles and the magnetic decoding of the encoded information (“1” and “0”, presence or absence of the magnetic nanoparticles, respectively).
  • PublicationOpen Access
    Non-linear GMI decoding in 3D printed magnetic encoded systems
    (Elsevier, 2023) Beato López, Juan Jesús; Algueta-Miguel, Jose M.; Galarreta Rodríguez, Itziar; Garayo Urabayen, Eneko; López Ortega, Alberto; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The nonlinear giant magnetoimpedance (GMI) effect was explored as a highly sensitive sensing technology in 3D-printed magnetic encoded systems. Magnetic nanoparticles with low (magnetite, Fe3O4) and high (Co ferrite, Co0.7Fe2.3O4) magnetic remanence were embedded (10 wt%) in a polymeric matrix of Polylactic Acid (PLA) and Poly-ε-caprolactone (PCL) and extruded in magnetic filaments to be 3D printed by the Fused Deposition Modelling technique (FDM). Two different geometries were constructed namely, individual magnetic strips and fixed barcoded pieces. The stray magnetic fields generated by the magnetic nanoparticles were detected through the non-linear (second harmonic) GMI voltage using a soft magnetic CoFeSiB wire as the nucleus sensor. The decoding response was analyzed as a function of the magnetization remanence of the nanoparticles, the distance between the individual magnetic strips, and the position (height) of the GMI decoding sensor. It has been shown that modification of the net magnetization direction of each individual fixed strip within the barcode geometry is possible through the application of local external magnetic fields. This possibility improves the versatility of the 3D binary encoding system by adding an additional state (0 without nanoparticles, 1 or −1 depending on the relative orientation of the net magnetization along the strips) during the codifying procedure.