Leandro González, Daniel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Leandro González
First Name
Daniel
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access All-PM fiber loop mirror interferometer analysis and simultaneous measurement of temperature and mechanical vibration(IEEE, 2018) Leandro González, Daniel; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn this work, a new all-polarization maintaining (PM) fiber loop mirror interferometer is proposed and validated as temperature and mechanical vibration sensor. The scheme employs the arms of a PM coupler as communication fibers, fused with a relative angle of 45° to the sensing fiber. The length of the arms is equal so their contribution in canceled, obtaining a total transfer function exclusively defined by the sensing fiber. The capabilities of the system as sensor are tested, achieving mechanical vibration and temperature sensing without crosstalk between measurands. In this manner, vibration frequencies up to 1.5 kHz have been monitored using a commercial interrogator with a scan rate of 1 Hz and a technique based on the fast Fourier transform. Additionally, the immunity of the setup to external perturbations in the communication fibers is studied and compared to the conventional approach.Publication Open Access Real-time FFT analysis for interferometric sensors multiplexing(IEEE / OSA, 2015) Leandro González, Daniel; Bravo Acha, Mikel; Ortigosa Cayetano, Amaia; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, a theoretical and experimental study of two interferometric sensor multiplexing schemes has been carried out by means of the fast Fourier transform (FFT) analysis. This work addresses one of the main drawbacks of photonic crystal fiber (PCF) sensors, that is, its multiplexing capability. Using a commercial optical interrogator combined with a simple FFT measurement technique, the simultaneous real-time monitoring of several PCF sensors is achieved. A theoretical analysis has been performed where simulations matched with the experimental results. For the experimental verification, highly birefringent (HiBi) fiber sections that operated as sensing elements were multiplexed and tested in two configurations. Due to the FFT analysis, both multiplexing schemes can be properly interrogated by monitoring the FFT phase change at the characteristic spatial-frequency of each sensor. For this purpose a commercial interrogator and a custom Matlab program were used for computing the FFT and for monitoring the FFT phase change in real-time (1 Hz).Publication Open Access Simultaneous temperature and vibration monitoring using an all-PM fiber loop mirror interferometer(SPIE, 2017) Leandro González, Daniel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, an all-polarization maintaining fiber loop mirror interferometer is presented and validated as vibration and temperature sensor without crosstalk between measurands. The system is entirely built using polarization-maintaining (PM) fiber and a PM optical coupler. As a consequence, no polarization controllers are needed in the cavity, significantly simplifying the operation of the system and improving the stability and accuracy of the measurements. The loop comprises three PM fiber sections appropriately fused with an angle offset between them. In this manner, the interference is maximized and the sensing contributions of the two PM fibers used as communications channels are suppressed. The third PM fiber is used as the sensor itself, simultaneously monitoring temperature and mechanical vibration up to 1.2 kHz by means of an interrogation technique based on fast Fourier transform.