Fuentes Lorenzo, Omar

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fuentes Lorenzo

First Name

Omar

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Sensitivity enhancement in low cutoff wavelength long-period fiber gratings by cladding diameter reduction
    (MDPI, 2017) Del Villar, Ignacio; Partridge, Matthew; Rodríguez Rodríguez, Wenceslao Eduardo; Fuentes Lorenzo, Omar; Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Corres Sanz, Jesús María; James, Stephen; Tatam, Ralph; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua: 2017/PI044
    The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.
  • PublicationOpen Access
    Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point
    (IEEE, 2018) Del Villar, Ignacio; Fuentes Lorenzo, Omar; Chiavaioli, Francesco; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua
    Two phenomena for enhancing the sensitivity of longperiod fiber gratings are combined toward an increase of the sensitivity to strain of this type of devices: the dispersion turning point (DTP) and the cladding diameter reduction by an etching process. The results prove that sensitivities up to 20 pm/με can be attained, which is a ten-fold improvement compared to the previous works. The sensitivity in the grating region, which is subjected to etching, does not depend on the order of the cladding mode responsible for the attenuation bands generated in the transmission spectrum, but on the proximity to the DTP for each mode order. On the other hand, the sensitivity to strain of the global structure, including the region without etching, can be increased for lower order modes in a perceptible way if the length of the etched region is smaller compared to the fiber region under stress. The experimental results are supported with simulations based on coupled-mode theory and on FIMMWAVE, which allows understanding the phenomena involved during the sensing process.