Person:
Fuentes Lorenzo, Omar

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Fuentes Lorenzo

First Name

Omar

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

ORCID

0009-0006-1125-8666

person.page.upna

811537

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Generation of lossy mode resonances in planar waveguides toward development of humidity sensors
    (IEEE, 2019) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Lossy mode resonances (LMRs) are typically obtained with optical fibre. The Kretschmann configuration is an alternative but LMRs are generated with angles approaching grazing incidence. In this work, a new setup is explored, based on the lateral incidence of light on conventional planar waveguides such as glass slides or coverslips. Indium tin oxide was deposited onto both types of waveguides generating LMRs. The results of the simulations carried out agree well with the experimental results. As an example of the potential of this new and simple optical configuration, a humidity sensor with a sensitivity of 0.212 nm/% relative humidity (RH) in the range from 65% to 90% of RH was developed, which expedites the development of other types of sensors already explored with LMR-based optical fibre sensors.
  • PublicationOpen Access
    Multichannel refractometer based on lossy mode resonances
    (IEEE, 2022) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work a new multiparameter sensor platform based on lossy mode resonances is presented. The structure consists of a soda-lime optical slab waveguide butt-coupled to multimode optical fibers. A variable thickness thin-film is deposited to generate multiple independent resonances on the same waveguide, which can be monitored using a single spectrometer. In order to show the potentiality of the structure, a broad resonance was selectively narrowed by etching sections of the LMR producer thin film. The spectral width is progressively reduced, allowing to selectively isolate independent resonances, which opens the path for multiple LMR generation in the same spectra in a multiparameter sensing platform. The experimental results were corroborated with a theoretical analysis based on the finite difference method (FDM). As a proof of concept, two refractometers on the same waveguide were fabricated and tested using PDMS cells. This platform can be easily miniaturized in order to integrate multiple sensors at low cost, what can be of interest for the development of multi-analyte biosensors probes. IEEE
  • PublicationOpen Access
    Simultaneous generation of surface plasmon and lossy mode resonances in the same planar platform
    (MDPI, 2022) Fuentes Lorenzo, Omar; Del Villar, Ignacio; Domínguez Catena, Iris; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A planar waveguide consisting of a coverslip for a microscope glass slide was deposited in one of its two faces with two materials: silver and indium tin oxide (ITO). The incidence of light by the edge of the coverslip permitted the generation of both surface plasmon and lossy mode resonances (SPRs and LMRs) in the same transmission spectrum with a single optical source and detector. This proves the ability of this optical platform to be used as a benchmark for comparing different optical phenomena generated by both metal and dielectric materials, which can be used to progress in the assessment of different sensing technologies. Here the SPR and the LMR were compared in terms of sensitivity to refractive index and figure of merit (FoM), at the same time it was demonstrated that both resonances can operate independently when silver and ITO coated regions are surrounded by different refractive index liquids. The results were supported with numerical results that confirm the experimental ones.