Fuentes Lorenzo, Omar

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fuentes Lorenzo

First Name

Omar

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Generation of lossy mode resonances with different nanocoatings deposited on coverslips
    (Optical Society of America, 2020) Fuentes Lorenzo, Omar; Goicoechea Fernández, Javier; Corres Sanz, Jesús María; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The generation of lossy mode resonances (LMRs) with a setup based on lateral incidence of light in coverslips is a simple platform that can be used for sensing. Here the versatility of this platform is proved by studying the deposition of different coating materials. The devices were characterized with both SEM and AFM microscopy, as well as ellipsometry, which allowed obtaining the main parameters of the coatings (thickness, refractive index and extinction coefficient) and relating them with the different sensitivities to refractive index attained with each material. In this way it was possible to confirm and complete the basic rules observed with lossy mode resonance based optical fiber sensors towards the design of simpler and more compact applications in domains such as chemical sensors or biosensors.
  • PublicationOpen Access
    Multichannel refractometer based on lossy mode resonances
    (IEEE, 2022) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work a new multiparameter sensor platform based on lossy mode resonances is presented. The structure consists of a soda-lime optical slab waveguide butt-coupled to multimode optical fibers. A variable thickness thin-film is deposited to generate multiple independent resonances on the same waveguide, which can be monitored using a single spectrometer. In order to show the potentiality of the structure, a broad resonance was selectively narrowed by etching sections of the LMR producer thin film. The spectral width is progressively reduced, allowing to selectively isolate independent resonances, which opens the path for multiple LMR generation in the same spectra in a multiparameter sensing platform. The experimental results were corroborated with a theoretical analysis based on the finite difference method (FDM). As a proof of concept, two refractometers on the same waveguide were fabricated and tested using PDMS cells. This platform can be easily miniaturized in order to integrate multiple sensors at low cost, what can be of interest for the development of multi-analyte biosensors probes. IEEE
  • PublicationOpen Access
    Lossy mode resonances generated in planar configuration for two-parameter sensing
    (IEEE, 2021-04-29) Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Domínguez Rodríguez, Ismel; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This work shows a new sensor structure for simultaneous measurement of two parameters, temperature and refractive index. The optical configuration consists of incidence of light on the edge of a soda-lime coverslip fully coated with a CuO thin film and partially coated with a PDMS thick layer. This planar configuration permitted to generate two separated lossy mode resonances (LMRs): one centered at 600 nm and the other at 1000 nm. The second resonance is induced by the PDMS layer and it can be used to measure the temperature due to its high thermo-optic coefficient (the sensitivity is -1.75 nm/°C in the temperature range from 20 to 40 °C), whereas the first resonance is used for sensing refractive index with sensitivity of 1460 nm/RIU in the refractive index range from 1.3328 and 1.37. Finally, a calibration test was carried out using a calibrated oil series with refractive index ranging from 1.33 to 1.36. This work demonstrates the possibility of generating multiples resonances in a single structure as simple as a coverslip, which can be used as a multi-parameter interchangeable sensor, especially suitable for biological applications or the detection of heavy metals in water.