Oraa Iribarren, Iker
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Oraa Iribarren
First Name
Iker
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Modeling a grid-forming DFIG wind turbine(IEEE, 2023-08-31) Oraa Iribarren, Iker; Samanes Pascual, Javier; López Taberna, Jesús; Gubía Villabona, Eugenio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper presents a small-signal state-space model that allows analyzing the dynamics of doubly-fed induction generator (DFIG)-based wind turbines in which grid-forming control strategies are implemented. Specifically, in this paper, a droop-controlled DFIG wind turbine is modeled. The system is modeled in the dq-axis, synchronized with the grid voltage, which simplifies the modeling by not having to linearize the terms dependent on the rotational speed of the dq-axis. Independent models for each element of the system are obtained, which are then combined to model the complete system under study. This modeling methodology provides great flexibility, allowing for easy inclusion of the LC harmonic filter, and enabling future incorporation of the grid-side converter to analyze its interaction with the rotor-side converter. The developed model is validated through simulation, demonstrating that it accurately reproduces the dynamic response of the system under study.Publication Open Access Single-loop droop control strategy for a grid-connected DFIG wind turbine(IEEE, 2023) Oraa Iribarren, Iker; Samanes Pascual, Javier; López Taberna, Jesús; Gubía Villabona, Eugenio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCWhen grid-forming droop control strategies are implemented in grid-connected power converters, two control strategies are widely used: the single-loop and multiloop droop controls. However, only multiloop droop control strategies with inner control loops have been implemented in doubly fed induction generator (DFIG)-based wind turbines so far. This article proposes the application of a single-loop droop control strategy to a DFIG wind turbine, which has not been previously explored or implemented. As shown in the article, the application of the conventional droop control without inner control loops to DFIG-based wind power systems does not ensure a stable response. After modeling the system dynamics and evaluating its stability, two causes of instability have been identified: a resonance at the rotor electrical frequency relevant at high slips and a phase margin reduction at low slips. To solve these instability issues two control solutions are proposed: the emulation of a virtual resistor and a phase rotation. The proposed control strategy allows stabilizing the system and achieving a fast and damped dynamic response. The effectiveness of the proposed control strategy is validated by experimental results.Publication Open Access Influence of the grid-side converter synchronization loop on the small-signal stability of a grid-forming DFIG wind turbine(IEEE, 2024-08-30) Samanes Pascual, Javier; Oraa Iribarren, Iker; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn grid-forming mode (GFM) doubly-fed induction generator based wind turbines connected to the grid, the converter connected to the rotor side is normally responsible for providing the grid-forming characteristics, while the grid-side converter commonly controls the DC-bus voltage thanks to a current control loop implemented in a rotating reference frame. The angle for the rotating reference frame is obtained by means of a phase-locked loop, which synchronizes the converter with the grid. However, this synchronization loop can introduce stability problems in weak grids. This paper proposes to synchronize the grid-side converter by means of the power synchronization loop of the GFM control of the rotor-side converter. This eliminates the need to use of a specific phase-locked loop, improving small-signal stability as demonstrated in the small-signal stability analysis performed in this paper.